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Abstract 

 

Environmental changes have been shown to influence human health and 

mortality over time. In this thesis, the relationship between trends in mortality 

and trends in temperature changes (highest, average and lowest), as a proxy of 

changes in the climate, is analysed by using annual data for specified periods of 

the year (warm months, cold months, and all of the months) and for three areas 

of Italy: the North, Centre and South. Furthermore, the temperature-related 

stochastic mortality model recently proposed by M. Seklecka, A.A. Pantelous 

and C. O’Hare1 is fitted with Italian data and investigated in-depth, discussed 

and compared with other models. The authors have noted improvements in 

fitting and forecasting processes, mostly for cold months, by fitting the model 

with UK mortality and average temperature. 

This thesis seeks to discover whether that model may provide accurate 

results even for southern European populations, which live in a milder climate, 

and whether the highest or lowest temperature may be more significant than 

the average temperature for constructing projected life tables. 

The findings confirm that the proposed model might provide 

improvements in modelling human mortality rates and, as a novelty in the 

literature, that considering the highest or the lowest temperature results to be 

much more significant than implementing the average temperature or dividing 

the year into three periods. Nevertheless, several inconsistencies in the findings 

and a few unsteady results suggest that a different implementation of the 

temperature-related factor might be more appropriate and should be further 

explored in additional studies. 

 

  

                                                 
1 Seklecka M, Pantelous AA, O’hare C. Mortality effects of temperature changes in the United Kingdom. 

Journal of Forecasting. 2017; 36: 824-841. https://doi.org/10.1002/for.2473. 

https://doi.org/10.1002/for.2473
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Abstract 

 

Molte ricerche hanno dimostrato come i cambiamenti ambientali influenzino la 

salute e la mortalità dell'essere umano. In questa tesi, è investigata la relazione 

nel tempo tra la mortalità e le temperature massime, medie e minime, come 

proxy climatiche. L'analisi è effettuata per il Nord, il Centro ed il Sud Italia, 

utilizzando dati annuali riferiti ai soli mesi caldi, quelli freddi, o all'intero anno. 

 Inoltre, il modello stocastico di mortalità recentemente introdotto da M. 

Seklecka, A.A. Pantelous e C. O’Hare2, che incorpora al suo interno un fattore 

correlato alla temperatura, è fittato sui dati italiani ed investigato, discusso e 

comparato con altri modelli noti in letteratura. Gli autori, testando il modello 

per la mortalità e la temperatura media del Regno Unito, hanno notato 

miglioramenti nel fitting e nella previsione, soprattutto per i mesi freddi. 

 La seguente trattazione si pone due obiettivi principali, il primo è 

scoprire se risultati altrettanto positivi si riescano a replicare anche per 

popolazioni, come quelle dei paesi dell’Europa meridionale, caratterizzate da 

un clima più mite; il secondo è comprendere se le temperature massime o quelle 

minime possano essere più significative, rispetto a quelle medie, per costruire 

tavole di mortalità proiettate. 

 I risultati confermano che un modello correlato alla temperatura 

potrebbe fornire miglioramenti nel modellizzare la mortalità umana. Inoltre, 

come assoluta novità in letteratura, mostrano che la temperatura massima e 

quella minima sono più indicative che quella media per questa ricerca. Infine, 

evidenziano come la suddivisione dell'anno in tre sotto-periodi si sia rivelata 

non essenziale. Ciononostante, alcune incongruenze e alcuni risultati poco 

robusti nel corso della trattazione, suggeriscono che un’implementazione 

differente della temperatura nel modello potrebbe risultare più appropriata, e 

che sarebbe opportuno approfondire questa analisi in studi futuri. 

                                                 
2 Seklecka M, Pantelous AA, O’hare C. Mortality effects of temperature changes in the United Kingdom. 

Journal of Forecasting. 2017; 36: 824-841. https://doi.org/10.1002/for.2473. 

https://doi.org/10.1002/for.2473
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Chapter 1 
 

Introduction 
 

The interest paid to the mortality risk is continuously increasing, since 

governments, individuals and life insurers must address it in order to avoid 

costly evaluation errors which may lead to substantial losses. Hence, it is crucial 

that mortality models be the most accurate possible, since they return the 

technical bases used to calculate financial instruments linked to human life. 

Over the last 100 to 200 years, the increase in life expectancy has improved 

incredibly compared to the results which emerged up until the end of the 18th 

and beginning of the 19th century, exhibiting a rise of 30 years of life expectancy 

at birth during this period, mostly owing to the extraordinary medical and 

hygienic progresses available. Hence, predicting what might happen in the 

future is very difficult nowadays. 

Many studies indicate how temperature – and climate in general, which is a 

direct index of the Earth’s health – may affect both the quality and longevity of 

life. Every year, many people die because of weather conditions, not only 

directly from phenomena such as extreme temperatures, droughts, floods or 

storms, but also indirectly: climate changes are expected to cause an annual 

worldwide increase in deaths of about 250,000 persons from 2030 to 2050 as a 

result of malnutrition, diarrhoea, malaria and heat stress (World Health 

Organization, 2014). Naturally, each country faces a distinct climate, with 

different economic resources and a different culture. Some studies show that, in 

various populations, the relationship between climate and mortality exhibits 

different absolute values (Gasparrini et al., 2015; Analitis et al., 2008; Meehl and 

Tebaldi, 2004). Furthermore, as it might be expected, older adults are the most 

vulnerable to climatic changes (Hajat et al., 2014). Finally, the absence of 

adaptation to climatic changes is revealed to be a noticeable factor which 
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contributes to the temperature-linked mortality (Patz et al., 2005; McMichael et 

al., 2006)3. 

Since the 17th century, several mortality models have been proposed in the 

literature, with the aim of providing the best evaluation of mortality rates. The 

first models reflected simple mathematical law, while, starting with the Lee & 

Carter model (1992), later models also included the application of stochastic 

factors to take into consideration the variability surrounding the estimation. 

Many extensions of the Lee & Carter model have been introduced in the last 20 

years, sometimes showing accurate results. Recently, several authors have 

attempted to give an economic interpretation to the Lee & Carter latent factor 

𝒌𝒕
𝟏 or to explain mortality dinamics through macroeconomic fluctuations (see, 

for example, J.A. Tapia Granados, 2008, 2011; K. Hanewald, 2011; Niu G. and 

Melenberg B., 2014). 

Nonetheless, none of them has ever got a temperature-related factor before 

the article published by Secklecka, Pantelous and O’Hare, “Mortality effect of 

temperature changes in the United Kingdom”, in 2017. 

Following this paper, this thesis investigates the relationship between 

trends in temperature changes and trends in mortality in three regions of Italy 

(North, Centre and South). The motivation behind the choice of dividing the 

study into three areas, instead of considering the entire country at once, derives 

from the climatic heterogeneity of Italy. Furthermore, the analysis examines the 

highest, average and lowest temperature changes in order to look for a possible 

difference in the use of these series. 

This investigation begins in Chapter 2, where the longevity risk is 

explained within the Solvency II framework to determine the general issue. 

Then, in Chapter 3, several mortality laws and stochastic mortality models 

are briefly presented, mostly focusing on those which are more helpful for the 

subsequent analysis. 

                                                 
3 As Darwinian theory has taught, “It is not the most intellectual of the species that survives; it is not the 

strongest that survives; but the species that survives is the one that is able best to adapt and adjust to the 

changing environment in which it finds itself.” Cit. Leon C. Megginson.  
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Italian mortality and regional temperature data are introduced in Chapter 4 

with the help of graphs to understand the underlying heterogeneity. 

In Chapter 5, the series of time-dependent Lee & Carter model (1992) 

factors 𝒌𝒕
𝟏, and the series of the highest, average, and lowest temperatures for 

each gender, for each region and for the age range of 20-85 years, are studied 

through the Phillip-Perron (1988) and the Kwiatkowski-Phillips-Schmidt-Shin 

(1992) tests. Subsequently, the statistical association between 𝒌𝒕
𝟏 and 

temperature is examined by calculating the Pearson, the Kendall and the 

Spearman correlation coefficient, testing the null hypothesis of no correlation 

for the Pearson’s. A survey of the Pearson correlation coefficients between the 

central mortality rates and the three temperature series is also conducted, and it 

is checked the robustness of the results, since this correlation coefficient will be 

directly used in the temperature-related model. The results justify the 

introduction of the model and the continuation of the analysis. 

As a result, the Secklecka, Pantelous and O’Hare temperature-related factor 

model is proposed in the Chapter 6. First, the model is presented, its factors are 

singularly explained, and the estimation of its parameters is discussed before 

attempting to fit them. Then the parametric and projection risks are 

investigated. This first risk is monitored by analysing the parameter 

uncertainty, using the bootstrapping technique. The second risk is examined by 

exploring the goodness of fit: first by scanning the analysis of the residuals, 

then by calculating several error measures and by checking their robustness, 

and finally by examining the same measures for the out-of-sample data. Once 

completed, the model has been forecasted. All of these steps are continuously 

performed, comparing the results with those of the Lee and Carter (1992), the  

Plat (2009), and the O’Hare and Li (2012) models.  

Lastly, Chapter 7 shows the conclusion of this work. 
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Chapter 2 

 

Longevity Risk 
 

A good assessment of the mortality rates is critical for insurance (and 

reinsurance) companies, pension funds and governments. The longevity risk is 

profoundly affected by an incorrect valuation of the expected mortality rates 

and it must be adequately controlled in order to prevent incurring substantial 

losses. It is a sub-risk of a more general demographic risk, which also includes 

the insurance risk. Insurance risk is a pooling risk; it is derived from the 

random deviation of the number of deaths from their expected value, and it can 

be reduced through diversification, i.e. increasing the number of policies in the 

portfolio. On the contrary, longevity risk is a systematic risk; it emerges when 

the observed mortality rates are consistently different from those expected, and 

it may not be reduced through diversification because it moves in the same 

direction for all policies. Another classification for the demographic risk is that 

it can be individual, which is the possibility that a policyholder lives longer 

than expected by the policy, or aggregated when the average number of years 

of policyholders’ lives in the entire portfolio is taken into consideration. In the 

case of a pure endowment or a pension plan, it is also crucial to neither to incur 

massive losses, by overestimating the mortality death rates, nor to miss profits 

by underestimating them. In the first case, the payment period and the 

liabilities would increase; in the second case, insurance companies, aside from 

the fact that they would suffer from competition with other companies, need to 

save extra amounts to cover actuarial liabilities, which would immobilise these 

funds and eliminate the possibility of using them for other assets. Obviously, 

the opposite is true for life insurance companies. 

European insurance companies must fulfil a strict obligation of adequacy in 

their mortality profile characterisation; in fact, according to the principles of
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the International Accounting Standards Board (IASB), every source of risk must 

be measured at its fair value in order to enter it in the budget. 

 

2.1 Longevity risk in Solvency II4 

 

Solvency II is the current regulatory framework for European insurance and 

reinsurance companies. Its purpose is to increase the level of harmonisations of 

solvency regulations. Solvency II is divided into three pillars, following what 

Basel II (now updated to Basel III) represents in banking prudence regulation. 

Solvency II is founded by an integrated risk analysis which requires calculating 

the market-consistent value of assets and liabilities by observing the market 

prices (mark-to-market), where possible, or by using a mark-to-model 

technique if it is not. 

The technical provisions must be evaluated as the sum of the best estimate 

liability and risk margin. The calculation should be segmented by 

homogeneous product type. The best estimate liability (BEL) is the present 

value of expected future cash flows, discounted using a risk-free yield curve. 

The risk margin (RM) is intended to increase the technical provisions to the 

amount that would have to be paid to another insurance company in order for 

them to take on the best estimate liability. 

The Minimum Capital Requirement MCR is the minimum level of security 

below which the amount of financial resources should not fall. It is defined as a 

simple factor-based linear formula which is targeted at a Value at Risk measure 

over one year with 85% confidence. 

The Solvency Capital Requirement (SCR) should reflect a level of eligible 

own funds that enable insurance and reinsurance undertakings to absorb 

significant losses and that give reasonable assurance to policyholders and 

beneficiaries that payments will be made as they fall due. The SCR is a Value at 

                                                 
4 This section quotes many definitions from the Solvency II Directive (Directive 2009/138/EC). 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02009L0138-20140523
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Risk measure based on a 99.5% confidence interval of the variation over one 

year of the amount of basic own funds.  

The SCR has to cover some prescribed risk such as: 

● market risk  

● life underwriting risk  

● non-life underwriting risk 

● health underwriting risk  

● counterparty default risk  

● operational risk  

 

The SCR may be calculated by using an internal model, which is subject to 

authorisation by the supervisory authority of the insurance companies, or by 

using the standard formula. In the second case, the SCR for each risk is 

calculated through standard prescribed stress tests or factors and then 

aggregated by using correlation matrices in sub-modules and modules. The 

overall SCR is obtained by aggregating the risk modules through other 

correlation matrices. 

The longevity risk is one of the sub-modules of the life underwriting risk, 

and also of the health underwriting risk. This was adequately explained by the 

European Insurance and Occupational Pensions Authority (EIOPA) in 2014: 

The stress factor for longevity risk is intended to reflect the uncertainty in 

mortality parameters as a result of mis-estimation and/or changes in the level, 

trend and volatility of mortality rates and captures the risk of policyholders 

living longer than anticipated.  

The underlying assumptions for the longevity risk sub-module may be 

summarised as follows:  

∙   The annual mortality improvements follow a normal distribution.  

∙   For the simplified calculation of the capital requirement for longevity risk 

it is assumed that the average age of policyholders within the portfolio is 60 

years or more.  

∙  It is furthermore assumed that the average mortality rate of the respective 

insured persons does not increase by more than 10% each year. 



Chapter 2 – LONGEVITY RISK 

 

7 

 

2.2 Current situation 

 

By analysing the mortality trends of the last decades through the survival 

function (see Fig. 2.1), the rectangularisation and the expansion of its general 

shape is visible. The rectangularisation of the survival function indicates a 

higher concentration of the probability distribution around the Lexis point and 

its approach to the maximum lifespan. The expansion means that the maximum 

lifespan is rising. The consequence is an increasing life expectancy. 

 

    

Fig. 2.1 - Rectangularisation and expansion of the survival curve (S. Levantesi, “Laboratorio di tecnica 

attuariale”). 

 

Exploring the example of the country of Italy, the average life expectancy 

has increased by 20 years from the second half of the 19th century, and is now 

growing faster. The Italian National Institute of Statistics (ISTAT) expects that 

in 2060 the life expectancy at birth will be 85.5 years for Italian males and 90.3 

years for Italian females, while in 2015 it was 81.1 years for males and 86 years 

for females. Figure 2.2 shows the Italian data from 1931 to 2006. 

 

 

Fig. 2.2 -  Survival and death curve, Italian data (S. Levantesi, “Laboratorio di tecnica attuariale”). 
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2.3 Risk Management 

 

Operations of portfolio diversification are not useful for minimising the 

longevity risk due to its systematic nature. Therefore, there are two possibilities 

to deal with that risk – transferrance to third parties, and proper management.  

Transferring longevity risk to third parties means to apply either traditional 

reinsurance or financial reinsurance, but missed profits, and sometimes even 

losses, might be incurred in both cases. Traditional reinsurance does not often 

work properly to reduce the longevity risk, because the price of the reinsurance 

may be much higher for the insurer to erase all the profits. That issue directly 

derives from the non-pooling nature of the longevity risk, which increases the 

reinsurer’s exposure for every type of treaty. Likewise, appealing to the 

financial market through securitisation does not give the desired answers, 

although it may have the necessary amounts to decrease the longevity risk 

owing to the larger volume of financial market exchanges and non-correlation 

with other financial instruments. Without going into too much detail, it is worth 

remembering that Longevity Swap has not been revealed to be a convenient 

contract for the counterparties, whereas Longevity Bonds have been more 

interesting to the market and do not enhance the credit risk. Nevertheless, these 

solutions alone are not sufficient. 

The second possibility for dealing with longevity risk is by managing it 

directly; this basically means that insurance companies implement projected 

mortality tables, provided by using statistical procedures, which guarantee a 

better evaluation of the mortality profile. In this manner, they attempt to 

capture the correct actuarial value of the amounts to correspond to the 

annuitants beforehand. 

There are three different methods which may be used to project mortality 

rates: the use of expectation models, explanatory models or extrapolative 

models. 

The first method refers to the field of expert actuaries and demographers, 

who use their knowledge to develop opinions for the future mortality trend. 
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The second method, the use of explanatory models, considers exogenous 

risk factors, e.g. socio-economic, biomedical or environmental data, in 

modelling mortality. Although good improvements in fitting quality have been 

recently discovered, the forecast horizon of these models remains too short to 

provide good predictions, and the underlying relationship between mortality 

and risk factors is not always easy to capture. 

The last method – extrapolative models – currently represents the models 

mainly used by actuaries and governments. These models develop the 

projection by observing historical mortality trends and patterns, which provide 

a dynamic mortality rate as a function of the calendar year and age. These 

models implicitly assume that the past path will similarly continue in the 

future, they are easy to fit and to forecast for an extended horizon, and they 

give fine results when the past reference period is accurately chosen. These 

models may be divided into deterministic and stochastic versions. 

Deterministic extrapolative models merely extend the past mortality trends 

to the future. Though the mortality rates are well evaluated compared to the 

ones found through a hypothesis of static mortality, they still do not consider 

that the projection itself is affected by uncertainty (Fig. 2.3).  

 

  

Fig.2.3 – Deterministic extrapolative method (Pitacco, Denuit, Haberman, Olivieri A. (2009), “Modelling 

Longevity Dynamics for Pensions and Annuity Business”). 

 

In fact, three types of risk must be controlled: 

1) Projection risk: This risk derives from the inadequacy of the model to 

evaluate the mortality trend. 
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2) Parametric risk: This risk is inherent in the uncertainty of the parametric 

values of the model. 

3) Process risk: This risk is caused by the stochastic nature of the process 

which controls mortality. It is the risk of random fluctuation. 

 

The first two risks give the uncertainty risk, which may be reduced using 

proper stochastic models. The third risk may be reduced by raising the portfolio 

dimension or through reinsurance when possible. 

The stochastic extrapolative methods, on the contrary, make their 

projections based on a probability distribution. In this way, even the 

uncertainty risk of the projection is calculated by giving an interval estimation 

(Fig. 2.4). 

 

 

Fig.2.4 – Stochastic extrapolative method (Pitacco, Denuit, Haberman, Olivieri A. (2009), “Modelling 

Longevity Dynamics for Pensions and Annuity Business”). 

 

The stochastic extrapolative methods may evaluate both the random and 

the systematic mortality fluctuation and may assign probabilities to discrete or 

continuous scenarios. The main models used in the literature are: 

1) Econometric models 

2) Models founded on interdependent mortality projection at specific ages 

3) Models which use evaluation procedures on standard time series 

 

The model analysed in this thesis may be interpreted as a combination of a 

stochastic extrapolative model which uses evaluation procedures on standard 
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time series and an explanatory method, since it includes a temperature-related 

factor.  

Ultimately, there are several models in the literature (even one based on 

subjective expectation (Booth et al., 2008); each one has positive and negative 

aspects and sometimes it is not easy to state which one is better. Besides, 

changing some assumptions or calculating different error measures may 

provide different rankings. 

Still, in 2007 the Continuous Mortality Investigation – Life Office Mortality 

Committee set a number of desirable objectives for projection models: 

● Easy to use 

● Easily-to-understand parameters 

● Parsimony but good adherence to data 

● Able to reflect the cohort effect 

● Reasonable best estimate projection 

● Presence of confidence intervals 

● Ability to generate simple path 

 

Nonetheless, accurate quantification of the mortality table is required 

because some components of uncertainty remain for the future projection: 

● Model uncertainty: The “correct” underlying model is unknown. 

● Parameters uncertainty: Parameters are estimated from a finite dataset.  

● Stochastic uncertainty: This reflects the random fluctuation. 

● Measure and heterogeneity. 

● The experience might not be a good proxy for a future one. 

 

A general historical review of the mortality models is presented in the next 

chapter, and the Lee & Carter (1992), the Plat (2009) and the O’Hare and Li 

(2012) stochastic models are further examined, since these will be compared to 

the temperature-factor related model introduced in the Chapter 6. 
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Chapter 3 

 

Mortality models 
 

This chapter aims to introduce the mortality models as they have been 

proposed over time. Some of the most important mortality laws are described 

in the first section, from the beginning of the 17th century to the present day. 

The study of the Lee & Carter (1992), the Plat (2009) and the O’Hare and Li 

(2012) stochastic models is deepened in sections 3.2, 3.3 and 3.4, respectively, 

since they will be subsequently analysed in comparison to the temperature-

related model. Finally, the CBD and the Renshaw-Haberman stochastic models, 

well-known in mortality literature, are proposed in section 3.5. 

 

3.1 Mortality laws 

 

Over the last three centuries, many mortality laws have been proposed to try to 

describe mortality shape using a mathematical function. Some of the most 

representative are proposed below, in chronological order. 

De Moivre (1725) considered that the survival function Sx was linear: 

 

Sx = {𝟏 −
𝒙

𝝎
                            𝟎 ≤ 𝒙 ≤ 𝝎;  𝒙 > 𝝎             (1) 

 

Where ω is the maximum age (ω=86 for De Moivre). The main problem is 

that this model is not very realistic. Generalisations of this model were 

presented by De Graaf (1729) and Babbage (1823). 

According to Gompertz (1825), mortality exponentially rises with age; he 

introduced what is currently called the “force” of mortality: 

 

µx = 𝜶 𝒆𝜷𝒙      α > 0            (2) 
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Makeham (1860) generalised the Gompertz mortality law by introducing a 

constant addend which for the first time took into consideration accidental 

causes of deaths, supposedly independent of the natural ageing: 

 

µx = γ + 𝜶 𝒆𝜷𝒙   α,β > 0 ; γ ≥ 0     (3) 

 

Both the Gompertz and the Gompertz-Makeham models give good results 

for middle ages, but they capture neither the high mortality at the earliest ages 

nor the bump in the mortality curve around the range of ages from 18 to 25. 

Some extensions, such as in the Lazarus (1867) and the Thiele (1867) models, 

have been proposed to overcome these problems. The features of these laws 

lead us to the Heligman and Pollard (1980) model, which will be described 

soon. 

But first, it is interesting to show the Lexis (1878) model, in which the 

author hypothesises a Gaussian distribution of the age at death: 

 

f0(x) = 
𝟏

𝝈√𝟐𝝅
 𝒆

−(𝒙−𝒙̅)𝟐

𝟐𝝈𝟐      x ≥ x’            (4) 

 

Where 𝒙 is the Lexis point and x’ is the minimum applicable age. 

The Weibull (1939) law for the force of mortality is mentioned, too, because 

of its widespread use in the reliability theory: 

 

µx = 
𝜶

𝜷
  (
𝒙−𝝑

𝜷
)𝜶−𝟏  x ≥ 𝝑              (5) 

 

Where 𝜶,𝜷 and 𝝑 are positive parameters of shape, scale and localisation. 

Eventually, the Heligman and Pollard (1980) model was developed, which 

refers to the odd ratio between death and life probabilities. It consists of three 

addends whose roles are to capture infantile, accidental and senile mortality: 

 

𝒒𝒙

𝒑𝒙
  = 𝑨(𝒙+𝑩)

𝑪
 + 𝑫𝒆−𝑬(𝒍𝒏 𝒙−𝒍𝒏 𝑭)  

𝟐
+ 𝑮𝑯𝒙           (6) 
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Where A, B, C, D, E, F, G, H are parameters to be estimated. This model offers a 

proper fitting for the entire span of life, and it is used for some applications yet 

(see Fig. 3.1). 

 

 
 

Fig. 3.1 - L. Heligman, J.H. Pollard, “The Age pattern of Mortality”, Journal of the Institute of Actuaries, 

1980; 107: 49-80. 

 

3.2 Lee and Carter 
 

The Lee & Carter model (hereafter referred as the LC model) was introduced by 

Ronald Lee and Lawrence Carter in 1992 (Lee, R. and Carter, L. “Modeling and 

Forecasting U.S. Mortality”; 1992, Journal of the American Statistical Association 

87: 659-671).  The LC model is the most famous and widely used stochastic 

mortality model. By observing previous mortality rates, it uses time series to 

extrapolate the time trend through a one-factor stochastic model. Due to its 

endogenous mechanism of parameter calculation year by year, it manages to 

capture changes in the mortality trend rather well. 

The central mortality rates have a log-bilinear shape: 

 

ln (𝒎𝒙,𝒕) = 𝒃𝒙
𝟏 + 𝒃𝒙

𝟐𝒌𝒕
𝟏 + 𝜺𝒙,𝒕               (7) 
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Where: 

𝒎𝒙,𝒕 is the central mortality rate of people aged x in the year t. It is calculated as 

the ratio between the number of deceased people and the exposed to the 

risk both for age x and year t:  𝒎𝒙,𝒕 =  
𝑫𝒙,𝒕

 𝑬𝒙,𝒕
. 

𝒃𝒙
𝟏

 describes the average behaviour of the central mortality rate for every age. 

In addition, it ensures that the shape of the mortality curve conforms to 

the experience. By using the classic constraints (see Par. 3.2.1), this non-

parametric term represents the arithmetic mean of the ln (𝒎𝒙,𝒕) over all the 

observed period.   

𝒃𝒙
𝟐 is another non-parametric term, which explain how ln(𝒎𝒙,𝒕) reacts to the 

passage of time. It is a sensitivity parameter of the velocity of the mortality 

rate’s response to 𝒌𝒕
𝟏

 for every age:  
𝒅𝒍𝒏(𝒎𝒙,𝒕)

𝒅𝒕
 = 

𝒃𝒙
𝟐𝒅𝒌

𝒅𝒕
. 

𝒌𝒕
𝟏 represents a mortality changes index over time5. 

𝜺𝒙,𝒕  indicates the error term, the effects not captured by the model. The errors 

are assumed as i.i.d. with Normal distribution (0,σ2ε) (σ2ε<∞). 

 

This model is fitted with Italian data, and its parameters are plotted in 

Figure 3.3 to give a broader view of them6. The exponential trend shape of 𝒎𝒙,𝒕 

agrees with the opinion, currently verified, that the life expectancy increases 

over time, but less quickly year by year7. The central mortality rate is modelled 

as: 

 

𝒎𝒙,𝒕= exp (𝒃𝒙
𝟏+ 𝒃𝒙

𝟐𝒌𝒕
𝟏 + 𝜺𝒙,𝒕)                  (8) 

 

The strongest points of the LC model are its simplicity and good fitting 

results. Nonetheless, it has two principal negative aspects. The first one is that it 

does not hold a cohort factor, although the evidence confirms that it should be 

                                                 
5 The parameters meaning may be easily understood by viewing their plots (see Fig. 3.3 or Fig. 4.1). 

6 The data will be presented in Chapter 4. It is used the Brohuns et al. proposal shown in section 3.2.3. 

7 The forecast of 𝒎𝒙,𝒕 for the next 50 years is shown in Fig. 4.3 (a), (b) and (c) in section 4.1. 
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added (see Fig. 3.2). The second negative aspect is that it does not consider, 

according to the authors’ version, the mortality rates’ heterogeneity at different 

ages; despite the fact that that it is remarkable for the youngest persons and 

mostly for the eldest (see section 3.2.3).  

 

3.2.1 Estimation of parameters 

 

The LC model as described in equation (7) is underestimated. In fact, the terms 

of the second member are not observable. There is no unique parameterisation 

of the model, so some restrictions are required. The authors have applied these 

two constraints: 

 

{
∑ 𝒃𝒙

𝟐
𝒙 = 𝟏

∑ 𝒌𝒕
𝟏

𝒕 = 𝟎
               (9) 

 

Therefore, the 𝒃𝒙
𝟏 parameter results to be the temporal mean of the 

logarithm of the central mortality rates for every age x: 

 

 𝒃𝒙
𝟏̂ = 

𝟏

𝑻
 ∑ 𝒍𝒏(𝒎𝒙,𝒕)  𝒕                   (10) 

 

In order to calculate the optimal solution, the authors used Singular Value 

Decomposition (SVD), which is mathematically equivalent to performing the 

Principal Component Analysis (PCA) of the log-mortality rates’ covariance 

matrix. However, the 𝒃𝒙
𝟐̂ and 𝒌𝒕

𝟏̂ estimations do not ensure that the number of 

estimated deaths is similar to those observed. Hence, a second-stage estimation 

is required, which is a second iterative procedure which, by fixing 𝒃𝒙
𝟏̂ and 𝒃𝒙

𝟐̂, 

returns the 𝒌𝒕
𝟏̂ value which satisfies the condition 𝑫𝒕̂ = 𝑫𝒕. This equation may 

have no single solution or may not present any solution, so the model can 

become inconsistent. By using the Brouhns et al. (2002) variant instead, the 

parameters may be determined by maximising the log-likelihood function 

based on the model (see equation (17) and section 3.2.3). 
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3.2.2 Forecasting 

 

The 𝒌𝒕
𝟏 mortality index is the only parameter to forecast, since 𝒃𝒙

𝟏 and 𝒃𝒙
𝟐 are 

constant over time. The mortality index 𝒌𝒕
𝟏 is modelled and projected as a 

stochastic time series by using an appropriate AutoRegressive Integrated 

Moving Average (ARIMA) process found by the Box-Jenkins procedure. Lee 

and Carter, from their application to U.S. mortality, obtained an ARIMA (0,1,0) 

linear-trend for the latent factor 𝒌𝒕
𝟏. Thus, the 𝒌𝒕

𝟏 results are not independent 

from one another, but their innovations are. Therefore, it behaves as a simple 

random walk with drift:  

 

𝒌𝒕
𝟏 = 𝒌𝒕−𝟏

𝟏 + 𝒅 + 𝒆𝒕                (11) 

 

Where: 

𝒅 is the drift term. 

𝒆𝒕 is the error term, supposed Normal (0,σ2e)  distributed (σ2e<∞).  

The 𝒌𝒕
𝟏 standard error positively depends on the forecast horizon period s: 

 

𝝈𝒔 = 𝝈𝟏 √𝒔                       (12) 

 

Finally, it is possible to easily obtain 𝒎𝒙,𝒕 for every age x and year t. 

 

3.2.3 The Brouhns et al. (2002) proposal  

 

One of the main negative aspects of the LC model is that it implicitly assumes 

that the random errors 𝜺𝒙,𝒕 are homoscedastic, i.e. they hold the same variance 

among ages.  

That assumption is not very realistic, especially for older ages, where the 

small number of deaths produces statistical problems. Moreover, older adults 

are the most significant to study since most of the financial products linked to 

mortality refer to them. In order to find a remedy, N. Brouhns, M. Denuit and 
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J.K. Vermunt (2002) proposed a modification of the LC model, where the deaths 

are distributed as a Poisson distribution: 

 

ln(𝒎𝒙,𝒕) = 𝒃𝒙
𝟏+ 𝒃𝒙

𝟐𝒌𝒕
𝟏                                             (13) 

 

Dx,t ~ Poisson (Ex,t µ𝒙,𝒕)                                 (14) 

 

Where Ex,t is the number of the exposed to risk and µ𝒙,𝒕 is the force of 

mortality. Therefore, a Poisson random variation of deaths confers 

heteroscedasticity to the error term and more realism to the model. 

 

(a) (b) (c) 

Fig. 3.2 – LC heat map of the residuals for: (a) females from Lombardy during cold months; (b) males from 

Sicily during all of the months; and (c) males from Lazio during warm months8. 

 

  (a) (b) (c) 

Fig. 3.3 – LC parameters for females from Lazio during cold months (with 50 years of forecast for 𝒌𝒕
𝟏)9. 

                                                 
8 The diagonal lines heighten the presence of a cohort effect.  

9 The LC model parameter plots emerge as expected, considering the meaning of each parameter. 

Basically, the 𝒃𝒙
𝟏shape is almost the same for all similar populations. Although the 𝒃𝒙

𝟐 shape slightly 

differs when the data is changed, it generally shows a quick decreasing trend for the last ages. The 𝒌𝒕
𝟏 
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3.3 Plat 
 

The Plat (2009) model (hereafter referred as the P model) is an extension of the 

LC model which includes the cohort effect. The P model adapts well to all the 

age ranges and considers the experience of the younger ages. The model is: 

 

ln(𝒎𝒙,𝒕) = 𝒃𝒙
𝟏+ 𝒌𝒕

𝟏+ (𝒙̅ –  𝒙) 𝒌𝒕
𝟐 + (𝒙̅ –  𝒙)+ 𝒌𝒕

𝟑 + 𝜸𝒕−𝒙  + 𝜺𝒙,𝒕      (15) 

 

Where: 

𝒃𝒙
𝟏 is equivalent to the LC one; it reflects the general mortality path over ages.  

𝒌𝒕
𝟏, 𝒌𝒕

𝟐 and 𝒌𝒕
𝟑 describe changes of mortality for different calendar years for, 

respectively, ages, different age classes (reflecting the historical 

observation) and younger ages. 

The 𝒌𝒕
𝟏 factor is fitted with a non-stationary ARIMA process, while it assumes a 

stationary mean reverting process for 𝒌𝒕
𝟐 and 𝒌𝒕

𝟑 factors for non-

biologically reasonable results of the mortality curve using a non-

stationary ARIMA process. 

𝜸𝒕−𝒙   represents the cohort effect. It is modelled as a trendless Mean Reversion 

process since it is not expected to change over years. 

𝒙̅ is the mean of the ages into consideration and (𝒙̅  –  𝒙)+ = max (𝒙̅ – x , 0). 

 

The P model has parameter identifiability problems, which may be solved 

by using transformation factors to identify them. The setting constraints are: 

 

{

∑ 𝜸𝒄
𝒄𝟏
𝒄=𝒄𝟎

= 𝟎

∑ 𝒄𝜸𝒄
𝒄𝟏
𝒄=𝒄𝟎

= 𝟎

∑ 𝒌𝒕
𝟑

𝒕  =  𝟎

              (16) 

 

Where: 

c = t – x. 

                                                                                                                                               
trend is strictly decreasing over time but the width of the forecast intervals differs substantially among 

samples. 
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𝒄𝟎 and 𝒄𝟏 are the earliest and the latest year of birth used to fit the cohort effect. 

The first two constraints enable the 𝜸𝒕−𝒙  process to only consider the cohort 

effect, without compensation for age or calendar year effects. The last constraint 

helps to normalise the factors. 

For the fitting process, it may be assumed that the number of deaths is 

described by a Poisson (𝑬𝒙,𝒕𝒎𝒙,𝒕) distribution (14). Under this 

assumption, 𝒃𝒙
𝟏, 𝒌𝒕

𝟏, 𝒌𝒕
𝟐, 𝒌𝒕

𝟑 and 𝜸𝒕−𝒙 factors may be estimated by using an 

iterative algorithm which maximises the log-likelihood function: 

 

L (𝝍,𝑫, 𝑬) = ∑ 𝑫𝒙,𝒕𝒍𝒏 [𝑬𝒙,𝒕𝒎𝒙,𝒕(𝜱)]  − 𝑬𝒙,𝒕𝒎𝒙,𝒕(𝝍)− 𝒍𝒏 (𝑫𝒙,𝒕!)𝒙,𝒕  (17) 

 

This procedure leads to 𝒌𝒕
𝟏, 𝒌𝒕

𝟐, 𝒌𝒕
𝟑 and 𝜸𝒕−𝒙  time series, then suitable 

ARIMA processes are fitted to forecast, as well as the previous models. 

 

3.4 O’Hare and Li 

 

The O’Hare and Li (2012) model (hereafter referred as the OL model) is a 

modification of the P model:  

 

ln(𝒎𝒙,𝒕)= 𝒃𝒙
𝟏+𝒌𝒕

𝟏+(𝒙̅–x) 𝒌𝒕
𝟐+((𝒙̅– 𝒙)+ + ([𝒙̅ –  𝒙]+)𝟐) 𝒌𝒕

𝟑+ 𝜸𝒕−𝒙 + 𝜺𝒙,𝒕     (18) 

 

Where 𝒌𝒕
𝟑 multiplies another coefficient in order to capture the non-linear 

(quadratic) effects in the lower ages, when the variance is higher due to the 

smaller number of deaths and the specific causes of death for this age range. 

The constraints are the same as those exposed for the P model: 

 

{

∑ 𝜸𝒄
𝒄𝟏
𝒄=𝒄𝟎

= 𝟎

∑ 𝒄𝜸𝒄
𝒄𝟏
𝒄=𝒄𝟎

= 𝟎

∑ 𝒌𝒕
𝟑

𝒕  =  𝟎

              (16) 
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In order to fit the model, it may be assumed that Dx,t ~ Poisson (Ex,t µ𝒙,𝒕), and 

the parameters are estimated by maximising the log-likelihood function (17). 

In some countries, this model returns an improved fitting quality compared 

to the LC model and the P model because it may capture the non-linear 

behaviour of log mortality at younger ages for mature ages. 

 

3.5 Other models 

 

Although they will not be used to make comparisons with the temperature-

related model, the Renshaw and Haberman (2006) and the CBD (2006) models 

are briefly introduced here, owing to their importance in the literature. 

 

3.5.1 Renshaw and Haberman (2006) 

 

The Renshaw and Haberman (2006) model is an Age-Period-Cohort (APC) 

version of the LC model; that is, it is another generalisation of it, built by 

adding a cohort factor 𝜸𝒕−𝒙 . The Renshaw and Haberman (2006) model revisits 

a previous model released in 2003: 

 

ln(𝒎𝒙,𝒕) = 𝒃𝒙
𝟏+ 𝒃𝒙

𝟐𝒌𝒕
𝟏 + 𝒃𝒙

𝟑𝜸𝐭−𝐱  + 𝜺𝒙,𝒕                      (19) 

 

Where 𝒃𝒙
𝟑 describes, for every age, how the mortality reacts to changes in 

the cohort effect. One of the variants of the model includes a modification by 

setting 𝒃𝒙
𝟑=1, which solves some stability problems. Four constraints are 

suggested to obviate the identifiability problems: 

                   

{
 
 

 
 ∑ 𝒃𝒙

𝟐
𝒙 = 𝟏

∑ 𝒌𝒕
𝟏

𝒕 = 𝟎
∑ 𝜸𝒕−𝒙 𝒙,𝒕 =  𝟎

∑ 𝒃𝒙
𝟑

𝒙 = 𝟏

                            (20) 
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The first two constraints are the same as those of the LC model. Even so, 

the authors have recently offered two alternative constraints to obtain a better 

model fitting: 

 

{
𝒌𝒕
𝟏 = 𝟎

𝒃𝒙 
𝟐 > 𝟎

                        (21) 

 

Under the assumption of independence between period and cohort effects, 

𝒌𝒕
𝟏 and 𝜸𝒕−𝒙  are developed as ARIMA processes and the mortality projections 

are found by forecasting these time series. This model presents a proper fitting, 

especially for populations featured with an evident cohort effect. Nevertheless, 

it might suffer a lack of robustness since the likelihood function might not have 

an absolute maximum and the optimisation process might lead to several local 

maxima with marked differences between them. Therefore, it may occur that a 

different set of parameters results when using a different age range or a 

different period, which is not a desirable feature. 

 

3.5.2 CBD (2006) 

 

The CBD model (2006) has been proposed by Andrew Cairns, David Blake and 

Kevin Dowd, three English university professors. By testing their model using 

English and Welsh males in the age range of 60 to 80 years, they noticed both 

that there was a trend in the year of birth of the fitted cohorts and that the 

natural logarithm of the mortality odds assumed a linear relationship over time: 

 

ln ( 
𝒒𝒙,𝒕

𝒑𝒙,𝒕
 ) = 𝒌𝒕

𝟏+ (𝒙̅ – x) 𝒌𝒕
𝟐 +  𝜺𝒙,𝒕                          (22) 

 

Where 𝒌𝒕
𝟏 and 𝒌𝒕

𝟐 are two stochastic processes which form a bivariate random 

walk with drift, according to the authors’ data, and drive the forecast. The 

model has neither a static age function nor a cohort effect. It has no 

identifiability problems, so constraints are not requested. The authors have 
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subsequently presented some variants which, as well as the other models, need 

transformation factors in order to be individuated. Therefore, the parameters 

estimation for this model is performed by using the Ordinary Least Squares 

(OLS) method: 

 

𝑶t (k)  = ∑ (𝒍𝒏 ( 
𝒒𝒙,𝒕̂

𝒑𝒙,𝒕̂
 ) − 𝒌𝒕

𝟏 + (𝒙̅ –  𝒙)𝒌𝒕
𝟐)𝟐  

𝒙=𝒙𝒎
𝒙=𝒙𝟏

                       (23) 

 

Table 3.1 gives an overall view of the stochastic mortality models proposed in 

this chapter. 

 

 

Stochastic 

mortality models 

 

 

Non-parametric 

age function 

 

Parametric 

age function 

 

Does not include 

cohort term 

 

 

 

Lee and Carter (1992) 

 

 

 

CBD (2006) 

 

Includes 

cohort term 

 

 

 

Renshaw and Haberman (2006) 

 

Plat (2009) 

O’Hare and Li (2012) 

Table 3.1 – A simple classification of the stochastic mortality models presented in this chapter. 

 

3.5.3 Cairns et al. (2008) criteria 

 

The researchers Cairns, Blake and Dowd have presented criteria (Cairns, A.J.G., 

Blake D. and Dowd, K., “Modelling and Management of Mortality Risk: A Review”, 

2008) against which a model may be assessed: 

1) Mortality rates should be positive. 

2) The model should be consistent with historical data. 

3) Long-term dynamics under the model should be biologically reasonable. 

4) Parameter estimates should be robust relative to the period of data and range 

of ages employed. 
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5) Model forecasts should be robust relative to the period of data and range of 

ages employed. 

6) Forecast levels of uncertainty and central trajectories should be plausible and 

consistent with historical trends and variability in mortality data. 

7) The model should be straightforward to implement using analytical methods 

or fast numerical algorithms. 

8) The model should be relatively parsimonious. 

9) It should be possible to use the model to generate sample paths and calculate 

prediction intervals. 

10) The structure of the model should make it possible to incorporate parameter 

uncertainty in simulations. 

11) At least for some countries, the model should incorporate a stochastic cohort 

effect. 

12) The model should have a non-trivial correlation structure. 

 

An additional criterion has been suggested by H.J. Plat (Essays on valuation 

and risk management for insurers, 2011) and is the applicability for a full age 

range. Table 3.2 summarises the criteria satisfaction for the stochastic mortality 

models proposed in this chapter. 

 

 
 

Table 3.2 – Satisfaction of criteria for the mortality models presented in this chapter (Plat H.J., Essays on 

valuation and risk management for insurers (2011)). 
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Chapter 4 

 

Data from Italy 
 

Not only do temperature and climatic changes, including extreme 

temperatures10 such as heat waves (Meehl et al., 2004) and extreme cold or 

weather conditions such as rain or wind11, directly affect human mortality but 

they also have an indirect effect, by modifying the surrounded environment 

where populations live. A clearer view may be obtained by thinking about the 

climate impact on flora and fauna or on the spread of infectious diseases (see, 

for instance, IPCC (2014) or Wu et al., 2017). In the literature, many other 

authors have studied the correlation between the climate factor and death (e.g. 

McMichael et al., 2006; Patz et al., 2005; Gosling et al., 2009). 

In this thesis, the relationship between mortality rates and three indexes of 

temperature (average, highest and lowest) is investigated for three Italian 

regions: Lombardy, Lazio and Sicily. Temperature indexes are chosen as a 

proxy of a more general climatic index for two main reasons. Firstly, because, 

although it is challenging to capture all the significant factors involved in 

climatic changes, the temperature effects on human life are considered 

worldwide to be a reasonable approximation of all the climatic events which 

may alter mortality; secondly, because the time series of temperature indexes 

are reliable and easy to obtain for most countries around the world. For 

example, another interesting factor which might be taken into account is air 

humidity, which is strictly related to temperature. In fact, the more humid the 

air is, the more the temperature is felt by the population, especially the warmest 

temperatures. Nevertheless, sometimes air humidity time series are not 

                                                 
10 According to Patz et al., 2005, extreme temperatures will increase in relation to the average temperature, 

especially in the mid-latitudes (i.e., in Italy). 

11 See, for instance, Easterling et al., 2000 for the Italian region of Trentino. 
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available, and its relationship with temperature does not have a single 

representation. 

Italy’s terrain is considerably variegated. Not only does it differ among its 

regions in terms of temperature values, but also in economic and cultural 

features and in people’s lifestyles. In this paper, three Italian regions are 

analysed: Lombardy, Lazio and Sicily. These regions reliably represent the three 

zones into which the country of Italy may be divided: these regions have been 

carefully chosen considering their positions (which is in the centre of the North, 

the Centre and the South), their population size (they are the most populated 

region in their area) and their temperature features (which is within the average 

of each zone). Data are presented in the following sections with the help of 

graphs, specifically mortality data (section 4.1), and temperature (section 4.2). 

 

4.1 Mortality data 

 

Mortality rates have continuously and quickly decreased over the last two 

centuries for all ages, although they have shown different results, with even 

better improvement in the last fifty years. People now live longer, primarily 

thanks to science and medical evolution which enables humans to reach, in 

many developed countries, a life expectancy at birth above 80 years old. Figure 

4.1 shows Italian data over the last forty years for the male population up to 100 

years old, and it shows that the decrease is remarkable for every age.  

 

 

Fig. 4.1 – Italian male death rates, from 1974 to 2014. 
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To better understand the LC model, it may be considered that its terms 

idealistically represent some features of this graph: the general shape of the 

mortality rates over ages is captured by the coefficient 𝒃𝒙
𝟏, while the decrease 

over the years from 1974 to 2014 is represented by the factor 𝒌𝒕
𝟏. Lastly, the 

differences of that decrease for each age are modelled by 𝒃𝒙
𝟐. It is also 

interesting to focus solely on a 50-year-old male as an example of examining the 

decreasing central mortality rate trend over these years (Fig. 4.2). 

 

 

 

Fig. 4.2 – The central mortality rates path for a 50-year-old Italian male, over the period of 1974-2016. 

 

Annual resident population data on the 1st of January and death 

probabilities for each year between 1974 and 2016, divided by gender, age and 

region, are provided by the Italian National Institute of Statistics (ISTAT). In 

order to obtain monthly data, the resident population on the 1st of every month 

is calculated by using linear interpolation, which is considered the best 

approximation procedure for this analysis. Death probabilities, on the other 

hand, are adjusted through a monthly trend factor, which is calculated by 

observing the monthly deaths data, available for the period November 2011 – 

July 201612, and by assuming a constant trend over the previous years. Finally, a 

monthly average over the warm months, over the cold months and over all of 

the months is calculated in order to obtain seasonal mortality data. The age 

                                                 
12 The record of October 2011 is available, too, but it has been eliminated during the data analysis process, 

since it is considered unreliable. 
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range is limited from 20 to 85, and a constant force of mortality is assumed for 

each sub-period so that the central mortality rates 𝒎𝒙,𝒕 may be calculated as in 

the formula: 

 

𝒎𝒙,𝒕 = - ln (1-𝒒𝒙,𝒕)                      (24) 

 

Where 𝒒𝒙,𝒕 is the probability of death. 

Furthermore, it is used the relationship which links exposed to risk 𝑬𝒙,𝒕, central 

mortality rate 𝒎𝒙,𝒕 and the number of deaths 𝑫𝒙,𝒕: 

 

𝑫𝒙,𝒕 = 𝑬𝒙,𝒕* 𝒎𝒙,𝒕                       (25) 

 

In order to show the mortality differences for the critical variables, four 

plots are displayed on a semi-logarithm scale (Fig. 4.3 (a) and (b); Fig 4.4 (a) and 

(b)) with a thirty-year projection based on an LC model with Poisson 

distribution of deaths (see section 3.2.3) for the first three. The age and gender 

variables are respectively scanned in Figure 4.3 (a) for a male from Lazio and in 

Figure 4.3 (b) for a 75-year-old Sicilian person. 

 

(a)  (b)     

 

Fig. 4.3 – Comparisons of the mortality among the variables “age” (a) and “gender” (b). 
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In addition, the difference between the rates for warm months and cold 

months (see the following section for more details) for an 80-year-old female 

from Lombardy is displayed in Figure 4.4 (a). Lastly, Figure 4.4 (b) heightens 

the importance of the regional variable.     

 

(c)   (d) 

 

Fig. 4.4 – Comparisons of the mortality among the variables “period of the year” (a) and “region” (b). 

 

4.2 Temperature data 
 

The mean surface temperature in Italy has increased by about 2.5°C during the 

last century. After analysing whether the mean monthly temperature records 

are either below or above the average annual temperature, the calendar years 

are divided into two equal parts. The first part is referred to as the cold months, 

from November to April, the second part reflects the warm months, from May 

to October. Of course, the annual data have not been left out, and they will 

continue to be studied. 

Temperature data are recorded for the same period by the weather station 

of “Milano Linate” for Lombardy, by the weather station “Roma Collegio 

Romano” for Lazio and by the “Palermo Punta Raisi” weather station for Sicily. 

Milan, Rome and Palermo are the chief cities of the regions of Lombardy, Lazio 
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and Sicily, respectively; they are situated in the middle of their region, and they 

include a majority of their population (moreover, they represent three of the top 

five Italian cities in terms of population size). Hence, for this mortality study, 

their temperature series may be considered a proper proxy for their region. 

 Temperatures in Northern Italy differ from those of Central or Southern 

Italy. The main differences are not observed in the average temperature13 or in 

the highest one14, but in the lowest temperature. This is very interesting, since 

the results of Seclecka, Pantelous and O’Hare showed that mortality rates are 

more correlated with the cold months, when the coldest temperatures occur15. 

This result advances the idea that a difference of the model validity among 

regions may be discovered. By focusing on the cold months, the arithmetic 

mean of the lowest temperatures over the period 1974-2016 records 2.83°C for 

Lombardy, 5.62°C for Lazio and 11.37°C for Sicily. This difference is notable 

considering that during the warm months the same value is 15.07°C for 

Lombardy, which is definitely closer to 11.37°C than 2.83°C. In addition, it is 

important to remember that these are arithmetic means over 43 years and the 

records are more meaningful by observing, for example, the absolute minimum 

monthly lowest temperature, which is -5.6°C for Lombardy, -0.6°C for Lazio 

and an astounding 7.3°C for Sicily16. Figure 4.5 (a), (b), (c), (d) shows the 

arithmetic mean of the highest, average and lowest temperature records for the 

three regions, combined in annual and seasonal data over the period 1973-2017 

with an additional trend line for the next ten years. Although the period is not 

very long, an increase is overt in every trend. 

                                                 
13 For instance, the annual mean of the average temperature is 13.41°C for Lombardy, 17.02°C for Lazio 

and 18.77°C for Sicily. 

14 For instance, the arithmetic mean of the highest temperature is 18.31°C for Lombardy, 21.24 for Lazio 

and 21.69°C for Sicily when the entire year is considered, while it is 25.47°C for Lombardy, 27.37°C for 

Lazio and 26.36°C for Sicily when only the period of the warm months is considered. 

15 In fact, they did not consider the lowest temperature data. 

16 Respectively, on February 1991, February 2003 and January 2014. 
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These analyses accept the hypothesis that a negative correlation may occur 

between temperature and mortality rates and suggest proceeding to study the 

correlation between these two variables. 

 

 

(a) (b) 

 

 

(c) (d) 

 

Fig. 4.5 – Analyses of selected temperature series: 

(a) Lazio, all of the months. (b) Sicily, average temperature. 

(c) Lombardy. (d) Average temperature, all of the months. 
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Chapter 5 
 

Trends and relationships among data 
 

In this chapter, the study of the Lee & Carter mortality index 𝒌𝒕
𝟏 and changes in 

temperature fluctuations is deepened, and a statistical relationship between 

them is searched17. In addition, a correlation coefficient between the central 

mortality rate 𝒎𝒙,𝒕 and temperature is sought, and its robustness is checked. 

The results strengthen the reliability of building a temperature-related factor 

model.  

 

5.1 Trends in the LC mortality index and the 

temperature fluctuations 

 

Following a similar pattern of the works of Hanewald (2011), Niu and Melberg 

(2014)18 and Seklecka, Pantelous and O’Hare (2017), unit root tests are 

performed on both the series to better analyse their behaviour. In so doing, it 

must be borne in mind that the variables do not have many observations since it 

is being studied over a forty-three year period. Thus, the subsequent 

interpretation and trustworthiness of the outputs must take that fact into 

account. The variables under consideration are the Lee and Carter mortality 

index 𝒌𝒕
𝟏19 and the logarithm of the highest, average and lowest temperature 

fluctuations for warm months, cold months and all months. 

                                                 
17 It is useful to remind the reader that a statistical relationship does not automatically imply a cause-effect 

relationship. 

18 Particularly, they have studied the relationship between the 𝒌𝒕
𝟏 of the Lee & Carter model and several 

economics indices. 

19 The Lee & Carter model parameters have been estimated by using the Brouhns et al. (2002) Poisson 

distribution variant. 
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Firstly, the Phillips-Perron (PP) test (Perron (1998)) is performed. The PP test is 

a generalisation of the augmented Dickey-Fuller (ADF) test and tests the null 

hypothesis of non-stationarity of the time series (i.e. that they have a unit root) 

against a stationary alternative. The PP test may be applied with the inclusion 

of a constant, a constant and a linear trend, or neither. By observing the plots of 

the mortality index 𝒌𝒕
𝟏 from 1974 to 2016, it is clear that it exhibits pronounced 

downward trend. In the same period, all the temperature series seem to display 

lightly raising fluctuations, however such a trend is not evident and is not really 

logical (see Fig. 3.3 (c) and Fig. 4.5). Therefore, the test is applied including both 

a constant and a linear trend, which is also the most general setting with which 

to proceed, for the 𝒌𝒕
𝟏, but without a linear trend for the temperature series. 

Results are shown in Table 5.1.  

Secondly, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test is 

performed, with the same assumption used for the linear trends of the time 

series as discussed for the PP. The KPSS, on the contrary, tests the null 

hypothesis of stationarity of a time series around a deterministic trend, against 

the alternative of a unit root. Through this test and considering the results of the 

PP test and the plots of the time series, the absence of a unit root may be the 

proof of a trend stationary series. Results are shown in Table 5.2. 

The PP findings for males and females and for temperature series are 

different. Considering the latent factor 𝒌𝒕
𝟏, the null hypothesis of non-

stationarity is rejected at the 5% significance level for females from each region 

without exception, while for males it is rejected for 5 of the 9 mortality indexes 

(but cannot be rejected for 2 of these at the 10% significance level). Therefore, 

according to the results of the PP test, and since the linear time trend is 

meaningful in these series, they are found to be trend stationary. With respect 

to the logarithm of the temperature fluctuations, once again the results differ 

among regions. The null hypothesis is rejected in every case for Sicily at the 5% 

significance level, but in the case of Lazio, there is no evidence to reject it for the 

average and the lowest temperatures of warm months and all months at the 

same level, while for the highest temperature it is always rejected. Considering 
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Lombardy, the null hypothesis is only rejected at this level for the highest 

temperature of the warm months and the lowest temperature of the cold 

months. In total, the null hypothesis cannot be rejected for 11 cases of the 27 

temperature indexes; hence, it is quite difficult to discover a general behaviour. 

Scanning the outputs of the KPSS test, with respect to the mortality index 

𝒌𝒕
𝟏, the null hypothesis is rejected for males from each region at the 5% 

significance level without exception, but it cannot be rejected for females from 

Lazio nor from Lombardy (only for cold months). Concerning the temperature, 

at the same level, the null hypothesis is always rejected for Lombardy, but only 

for the annual highest temperature for Sicily. Finally, for Lazio, the situation lies 

in the middle: the null is always rejected for the highest temperature but never 

for the lowest. In general, the test does not give homogeneous results. In fact, as 

is the case with the PP test, the null hypothesis cannot be rejected for 11 of the 

27 series at the 5% significance level. 

Tables 3.1 and 3.2 show various results among regions because distinct 

populations behave differently and the temperature changes substantially in 

different territories. Furthermore, comparing the PP test with the KPSS test, the 

findings may sometimes seem contradictory: it is worth remembering that these 

tests perform asymptotically and that in a finite sample is very difficult to 

distinguish between a trend-stationary and a difference-stationary behaviour. 

The first one may be made stationary by removing the deterministic trend, 

while the second one, after differencing. By applying the wrong transformation, 

there is a risk of incurring grave consequences20. Therefore, drawing general 

conclusions is complicated, and it is better to stop the analysis of the series at 

levels. In the next section, similarly to what other studies have done for 

macroeconomic indexes (see, for example, J.A. Tapia Granados (2008), (2011)), the 

                                                 
20 Hence, with these data, it is not very sensible to proceed by studying the co-integration of the series 

(either with the Johansen test or Engle Granger’s test), as Seklecka, Pantelous and O’Hare have done. In 

fact, two time series are co-integrated when they are integrated and a linear combination of them is 

stationary; thus, it may be interpreted as a long-run relationship between the variables. Moreover, it 

would be sensible to study co-integration between two series which graphically behave “similarly”. 
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statistical association between the mortality index 𝒌𝒕
𝟏 and temperature will be 

further examined by calculating the Pearson’s correlation coefficient, in order to 

attempt to give a climatic interpretation to the latent factor 𝒌𝒕
𝟏. 

 

 
 

Table 5.1 – Phillip-Perron test of the 𝒌𝒕
𝟏 and the natural logarithm of the temperature series.21 

 

 
 

Table 5.2 – KPSS test of the 𝒌𝒕
𝟏 and the natural logarithm of the temperature series.19 

                                                 
21  To calculate the results of the tests, the ur.pp and the ur.kpss functions, from the R package “urca”, 

have been used (for more details, see: https://cran.r-project.org/web/packages/urca/).  

https://cran.r-project.org/web/packages/urca/
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5.2 Correlation coefficients between the LC mortality 

index and temperature fluctuations  

 

According to the Seklecka, Pantelous and O’Hare (2017) article “Mortality effect 

of temperature changes in the United Kingdom”, the relationship between the 

mortality index 𝒌𝒕
𝟏 and the temperature fluctuations is investigated by testing 

the association between paired samples using the Pearson’s correlation 

coefficient; trying to give a climatic interpretation to the Lee & Carter latent 

factor 𝒌𝒕
𝟏. Moreover, to check the robustness of the results, the rank correlations 

Kendall’s τ and Spearman’s ρ are also calculated. The Pearson product-moment 

correlation coefficient (PPMCC) is a parametric measure of the linear 

association between two numeric variables. Kendall’s rank correlation is a non-

parametric measure of the association of x-y pairs based on concordance or 

discordance. Spearman’s rank correlation is another non-parametric measure of 

the monotonic association between two numeric variables. 

The outcomes, for each gender and all three highest, average and lowest 

temperatures, are shown in Table 5.3 for the Pearson coefficient, Table 5.4 for 

the Kendall coefficient and Table 5.5 for the Spearman coefficient. To simplify 

the reading, the greater results among temperature series of warm months, cold 

months and all of the months are highlighted in bold. The purpose is to attempt 

to draw a conclusion by comparing them to the ones displayed in the next 

section. The t-test, with the null hypothesis that a particular coefficient is equal 

to zero at a significance level of 5%, is also performed for the Pearson 

correlation coefficients. All correlations are negative and are occasionally very 

strong. Furthermore, by choosing any variable among the region, gender, 

temperature series or period of the year, the three tests display the same 

ranking, with similar numerical results most of the time22. 

By analysing the Pearson’s coefficient regionally, Lazio shows the strongest 

correlations for the highest temperature, with a vast difference from both the 

                                                 
22 The Kendall rank correlation coefficient usually gives lower results than the other two measures. 
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average and the lowest temperatures, for each gender and considering cold 

months, all of the months or, more weakly, the warm months. In fact, for both 

males and females, and for all three periods – warm months, cold months and 

all of the months – the null hypothesis of no correlation only for the lowest 

temperature is not rejected. 

With respect to Lombardy, on the other hand, every correlation is 

unquestionably significant, especially for the average and lowest temperature, 

and it is difficult to state which one of them is more correlated between them. 

By considering the entire year, the most reliable correlation manifests itself for 

the lowest temperature series, although the difference between the Pearson 

correlation coefficient of the average temperature series for females is negligible 

(-0.8298 versus -0.8263) and very small for males (-0.8375 versus -0.8194)23. On 

the contrary, for the cold months, the average temperature series gives stronger 

correlations for each gender with a broader difference with the lowest than 

previously. Lastly, with respect to the warm months, Kendall’s and Pearson’s 

coefficients suggest taking the lowest temperature series irrespectively from the 

gender, but the average is preferable24 when using the Spearman coefficient. 

Sicily presents the smallest correlations among the regions. The Pearson 

coefficient exceeds the absolute values of 0.4 only for the association between 

female mortality and the annual highest temperature. For this region, only 4 

correlations over 18 may reject the null hypothesis (22%). To a certain extent, 

the internal differences among highest, average and lowest temperature are 

similar, but more moderate, than those of Lazio. 

On the whole, 34 of the 54 (63%)25 correlations are significant, which 

evidently exceeds the 5% which may be expected in any random data set. 

                                                 
23 The other measures mark larger differences. The Kendall correlation coefficient provides the values of  

-0.6441 versus -0.5776 for females and -0.6530 versus -0.5865 for males, for lowest and average 

temperatures, respectively; while those of the Spearman coefficient are -0.8425 versus -0.7874 for females 

and -0.8487 versus 0.7960 for males. 

24 Even in this case, the difference is negligible: -0.7969 versus -0.7925 for females and -0.8062 versus            

-0.8022 for males, for average and lowest temperatures, respectively. 

25 Specifically: 67% for Lazio, 100% for Lombardy and 22% for Sicily. 
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Table 5.3 – Pearson’s correlation coefficients between temperature series and the LC mortality index 𝒌𝒕
𝟏. 

 

 

 

Table 5.4 – Kendall’s correlation coefficients between temperature series and the LC mortality index 𝒌𝒕
𝟏. 
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Table 5.5 – Spearman’s correlation coefficients between temperature series and the LC mortality index 𝒌𝒕
𝟏. 

 

5.3 Correlation coefficients between the mortality rates 

(by ages) and temperature fluctuations 

 

Because the results in the previous paragraph are not strong enough to be able 

to provide a climatic interpretation for the latent factor 𝒌𝒕
𝟏, the Pearson’s 

correlation coefficient between the temperature series and the central mortality 

rates 𝒎𝒙,𝒕 for each dataset is also analysed. These correlations will be directly 

implemented in the model structure (see Chapter 6). The results are presented 

in Figure 5.1 for Lazio, Figure 5.2 for Lombardy and Figure 5.3 for Sicily. Only 

the ages from approximately 40-45 years and older are discussed, because of the 

model structure (see section 6.1) and because the correlations are stable and 

strong in this range. 

Lazio shows the most robust correlations for the highest temperature, in 

which the correlations never fall short of the absolute value of 0.5, with a 
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marked difference from the average temperature (they never reach -0.6, but 

they are still interesting) and a primary difference with the lowest temperature 

(they remain in the range [−0.2, 0.1] and do not exhibit a remarkable 

correlation). Therefore, it seems the highest temperature will give the best 

fitting and forecasting results26.  

The extraordinary correlation results for Lombardy are similar to the ones 

seen in the previous section. They almost always present an absolute value 

above 0.7 for both the warm months and all of the months, and a slightly lower 

value for the cold months, where it is assessed around the range [−0.75,−0.5]. 

It is not an easy task to choose between the average and the lowest temperature 

series for cold months where they lay on top of each other, while for both the 

warm months and all of the months, the average temperature results are 

continuously more correlated than the lowest temperatures.  

Not only does Sicily present the lowest absolute values among all three 

regions, as was expected considering the climatic features of this region (see 

section 4.2) and the temperature-related causes of death previously discussed 

(see Chapter 4 and Introduction), but, contrary to all the other findings, the 

correlation between 𝑚𝑥,𝑡 and the lowest temperature is strictly positive27. The 

highest temperature always results as more correlated to the central mortality 

rate than the others, in absolute values. In any case, the outputs are generally 

less high, but still interesting, than those found for Lazio and, above all, for 

Lombardy: they assess around the range [−0.4, −0.6] with no substantial 

differences among different datasets. These findings primarily derive from the 

mild climate of the region. Thus, for this region, a lower improvement in fitting 

and forecasting quality is expected using the proposed model instead of the LC, 

P or OL models. Finally, Sicily also presents a different correlation shape over 

the ages compared with the other regions: in most cases it does not display a 

dump around the age of 30 years but remains rather linear. 

                                                 
26 This assumption is supported by the findings of the article by Seklecka, Pantelous and O’Hare. 

27 This feature, however, does not impact the model because the square of it is implemented. For more 

details, see the following chapter. 



Chapter 5 – TRENDS AND RELATIONSHIPS AMONG DATA 

 

41 

 

 

 

 

Fig.5.1 – Pearson’s correlation coefficient between temperature series and the central mortality rates 𝒎𝒙,𝒕 

for Lazio. 
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Fig. 5.2 – Pearson’s correlation coefficient between temperature series and the central mortality rates 𝒎𝒙,𝒕 

for Lombardy. 
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Fig 5.3 – Pearson’s correlation coefficient between temperature series and the central mortality rates 𝒎𝒙,𝒕 

for Sicily. 
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5.3.1 Robustness check 

 

The findings substantially support the assumptions that each region should be 

studied separately and that the highest and lowest temperature series may be 

meaningful. Moreover, the often-significant statistic relationships found 

between temperature and both 𝒌𝒕
𝟏 and 𝒎𝒙,𝒕 validate the study of the model. 

Before doing so, however, it is necessary to check the robustness of the Pearson 

coefficients for 𝒎𝒙,𝒕 and the temperature fluctuations since their direct 

implementation in the model. In the interest of not unnecessarily complicating 

this thesis, only the most significant series of the previous section are plotted 

below for each region. The other series are displayed in Appendix A28. Various 

periods are considered: from 1974 to 2016 (43 years), from 1974 to 2011 (38 

years), from 1974 to 2006 (33 years) and from 1974 to 2001 (28 years) – each 

period for warm months, cold months and all months. All the considerations 

refer to ages above 40-45 years, according to the considerations given in section 

5.3, which are also confirmed by Figures 5.4, 5.5 and 5.6, which show the results 

for Lazio, Lombardy and Sicily, respectively. With respect to Lazio, the analysis 

shows similar results for males and females. The plots indicate high robustness 

for all the periods; for the warm months, which are the least robust, the 

coefficient differences never reach 0.2. The correlations are high and stable. For 

Lombardy, the findings are as robust as those of Lazio, except for the 28-year 

period (from 1974 to 2001). In fact, the other correlations almost run together 

along the ages. Even for Sicily, the robustness is excellent for the cold months, 

while the results are weaker for the warm months and all of the months: the 

differences reach 0.35. In addition, the more years considered, the lower the 

correlation results. Lastly, the general shape of the graph of correlation for 

females does not possess the dump in the younger ages, as opposed to that 

which is shown in the other regions. In conclusion, the results of the robustness 

check are similar for males and for females, and the general shape of the 

                                                 
28 Similar good results, although less robust, are generally displayed for Lazio, and for Lombardy. 
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correlation coefficient graph remains when the data period is changed. 

Therefore, the age-specific temperature-related factor is not very sensitive to the 

data range used during the parameter fitting process, and great robustness is 

observed. Hence, the model may be fitted with confidence in its reliability. 

 

 

Fig 5.4 –Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and the highest temperature 

for various periods of time for Lazio, by gender, from 1974 to the reported year. 
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Fig 5.5 – Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and the average temperature 

for various periods of time for Lombardy, by gender, from 1974 to the reported year. 
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Fig 5.6 – Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and the highest temperature 

for various periods of time for Sicily, by gender, from 1974 to the reported year. 
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Chapter 6 

 

The model 
 

In this chapter, the temperature-related factor model is presented, discussed, 

analysed and compared with the LC, P and OL models. First, the model is 

proposed, its factors are singularly explained (section 6.1) and the estimation of 

its parameters is discussed (section 6.1.1) before fitting them (section 6.1.2). 

Subsequently, the parametric and projection risks are surveyed. The parametric 

risk is examined by checking the parameter uncertainty using the bootstrapping 

technique (section 6.1.3). Projection risk is evaluated by exploring the goodness 

of fit (section 6.2): firstly by investigating the analysis of the residuals (section 

6.2.1), secondly by comparing two error measures to those of the LC, P and OL 

models (section 6.2.2) and by checking their robustness (section 6.2.1), and 

thirdly by scanning the same measures for the out-of-sample data (sections 6.3.1 

and 6.3.2 for their robustness). After these steps, the model has been forecasted 

(section 6.3).  

 

6.1 The model 

 

The model proposed by Seklecka, Pantelous and O’Hare29 is: 

 

ln(𝒎𝒙,𝒕)=𝒃𝒙
𝟏+𝒌𝒕

𝟏+(𝒙–x) 𝒌𝒕
𝟐+(𝒙̅– 𝒙)+𝒌𝒕

𝟑+[(𝒂– 𝒙)+ + 𝒄𝒕𝒙(𝒙–𝒂)
+]𝟐𝒌𝒕

𝟒+ 𝜸𝒕−𝒙+𝜺𝒙,𝒕(26) 

 

Where: 

𝒃𝒙
𝟏 reflects the general mortality path by age, as well as the LC model’s general 

mortality path. 

                                                 
29 Seklecka M, Pantelous AA, O’hare C. Mortality effects of temperature changes in the United Kingdom. 

Journal of Forecasting. 2017; 36: 824-841. https://doi.org/10.1002/for.2473. 

https://doi.org/10.1002/for.2473
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 𝒌𝒕
𝟏, 𝒌𝒕

𝟐 and 𝒌𝒕
𝟑 describe mortality changes for different calendar years for, 

respectively, ages, different age classes and younger ages. 

 𝜸𝒕−𝒙  represents the cohort effect. 

 (𝒙̅ –  𝒙)+ = max (𝒙– x , 0) with  𝒙̅  being the arithmetical mean of the ages 

considered. 

 

This model preserves the good aspect of the LC model (described in section 

3.2) and possesses new positive features as a consequence of the inclusion of 

other parameters. Furthermore, it may be considered as an extension of the Plat 

model (described in section 3.3) or the O’Hare and Li model (described in 

section 3.4).  The innovations are the additions of the factor 𝒌𝒕
𝟒 and the factor ctx 

for ages after a. The purpose of the time-related factor 𝒌𝒕
𝟒 is to capture some of 

the temperature effects and non-linear features. The factor ctx refers to the 

relationship between the temperature and the central mortality rates at age x 

and it is calculated as the Pearson’s correlation coefficient between these two 

variables. By observing the formula (26), it can be seen that ctx includes 

temperature fluctuations only for elderly ages (above a) in a non-linear 

approach. Seniors are known to be the group with the most exposure to 

temperature changes (see Chapter 1).  The selection of age a is discretionary; it 

may be selected by analysing the Pearson’s correlation coefficient between 

temperature and central mortality rates, which generally becomes stable and 

strong from around age 40-45 years (see sections 5.3 and 5.3.1) for the Lazio, 

Lombardy and Sicily datasets over the period. Moreover, a single value for a or 

a different value for each region, each temperature series, each period of the 

year or even each dataset may be considered. On the one hand, a very general 

value for a might worsen the fitting quality; on the other hand, particularising 

too much might cause the general validity of the model to be lost. In this thesis, 

however, it is decided to calculate a single age threshold30 in order to give more 

                                                 
30 The work of Seklecka, Pantelous and O’Hare considers only the UK population and the average 

temperature, so their possibilities were limited. They calculated a general a without distinguishing 

between all, cold or warm months. 
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general worth to the model and because, for these data, the worsening is not 

significant. Age a is indicatively chosen to make the model sensitive to 𝒄𝒕𝒙 

when the survival curve starts to decrease rapidly. Therefore, after having 

compared the results of different a  values  for  the  range  [55, 65],  the  age  of  

58  is  selected  for  all  the datasets since it returns the best results in terms of 

MAPE31 (described further in section 6.2.2). 

 

6.1.1 Estimation of parameters 

 

This model includes six stochastic factors and it has identifiability problems just 

as the other stochastic mortality models presented in Chapter 3; hence, different 

parameterisations may produce the same central mortality rate. The model has 

the same time series structure of the P model (2009) and the OL model (2012); 

thus, the following parameter transformations do not change the results:  

 

{
 
 

 
 𝒃̃𝒙

𝟏  =  𝒃𝒙
𝟏 +𝝍𝟏 − 𝒙𝝍𝟐 + 𝒙

𝟐𝝍𝟑
𝒌̃𝒕
𝟏  = 𝒌𝒕

𝟏 + 𝒕𝝍𝟐 + (𝒕
𝟐 − 𝟐𝒙̅𝒕) 𝝍𝟑

𝒌̃𝒕
𝟐  =  𝒌𝒕

𝟐 + 𝟐𝒕𝝍𝟑
𝜸̃𝒕−𝒙 =  𝜸𝒕−𝒙 − 𝝍𝟏 − (𝒕 − 𝒙)𝝍𝟐 − (𝒕 − 𝒙)

𝟐𝝍𝟑

                  (27) 

 

and 

 

{
 
 

 
 𝒃̃𝒙

𝟏  =  𝒃𝒙
𝟏 + 𝒄𝟏 + 𝒄𝟐(𝒙̅ − 𝒙) + 𝒄𝟑(𝒙̅ − 𝒙)

+

𝒌̃𝒕
𝟏  =  𝒌𝒕

𝟏 − 𝒄𝟏
𝒌̃𝒕
𝟐  =  𝒌𝒕

𝟐 − 𝒄𝟐
𝒌̃𝒕
𝟑  =  𝒌𝒕

𝟑 − 𝒄𝟑

                   (28) 

 

With 𝝍𝟏, 𝝍𝟐, 𝝍𝟑, 𝒄𝟏, 𝒄𝟐 and 𝒄𝟑 constants, which may be resolved by setting 

identifiability constraints:  

 

                                                 
31 In other words, it is the value by which the model is more times preferable to the LC, P and OL models. 
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{
 
 
 
 

 
 
 
 
∑ 𝒌𝒕

𝟏
𝒕  =  𝟎

∑ 𝒌𝒕
𝟐

𝒕  =  𝟎

∑ 𝒌𝒕
𝟑

𝒕  =  𝟎

∑ 𝒌𝒕
𝟒

𝒕  =  𝟎

∑ 𝜸𝒄
𝒄𝟏
𝒄=𝒄𝟎

= 𝟎

∑ 𝒄𝜸𝒄
𝒄𝟏
𝒄=𝒄𝟎

= 𝟎

∑ 𝒄𝟐𝜸𝒄
𝒄𝟏
𝒄=𝒄𝟎

= 𝟎

                        (29) 

 

Where: 

c = t – x. 

𝒄𝟎 and 𝒄𝟏 are the earliest and the latest year of birth used to fit the cohort effect. 

The first four constraints help to normalise the estimates of the period indexes 

and may be imposed by applying the transformation (28) with: 

 

𝒄𝒊 =
𝟏

𝒏
∑ 𝒌𝒕

𝒊
𝒕     i=1,2,3                     (30) 

 

The last three constraints enable the 𝜸𝒕−𝒙 process to consider only the cohort 

effect which fluctuates around zero without linear or quadratic trend and 

without compensating for age or calendar year effects; they may be imposed by 

applying the transformation (27) with the constants obtained by the regression32 

of   𝜸𝒕−𝒙 on (𝒕 − 𝒙) and (𝒕 − 𝒙)𝟐: 

 

 𝛄𝐭−𝐱 = 𝛙𝟏 + (𝐭 − 𝐱)𝛙𝟐 + (𝐭 − 𝐱)
𝟐𝛙𝟑 + 𝛆𝐱,𝐭  𝛆𝐱,𝐭~𝐍(𝟎, 𝛔

𝟐) i.i.d.   (31) 

 

6.1.2 Model fitting 

 

With the aim of taking into account the observable heteroscedasticity of the 

mortality data, especially for the elderly ages, the Brouhns, Denuit and 

Vermunt (2002) fitting methodology variation (already mentioned in section 

3.2.3) is used, instead of the original Lee and Carter proposal of employing the 

                                                 
32 For more information, see Haberman and Renshaw (2011), Appendix A. 
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Singular Value Decomposition (SVD). This variant confers more realism on the 

model and more accurately forecasts mortality, and it has been used by many 

other authors, including Renshaw and Haberman (2006), Cairns et al. (2009), 

Plat (2009), and O’Hare and Li (2012)33. 

Therefore, the number of deaths Dx,t is modelled as a Poisson distribution 

with parameter 𝑬𝒙,𝒕 𝒎𝒙,𝒕, where 𝑬𝒙,𝒕 is the number of exposed to risk and 

𝒎𝒙,𝒕 is the central mortality rates to be estimated34: 

 

Dx,t ~ Poisson (Ex,t µ𝒙,𝒕)                                 (14) 

 

Finally, the parameters are estimated by maximising the log-likelihood 

function35: 

 

L (𝝍,𝑫, 𝑬) = ∑ 𝑫𝒙,𝒕 𝒍𝒏[𝑬𝒙,𝒕𝒎𝒙,𝒕(𝜱)] − 𝑬𝒙,𝒕𝒎𝒙,𝒕(𝝍) − 𝒍𝒏 (𝑫𝒙,𝒕!)𝒙,𝒕         (17) 

 

Figures 6.1, 6.2, 6.3 and 6.4 plot the estimated values of 𝒌𝒕
𝟏 (a), 𝒌𝒕

𝟐 (b), 𝒌𝒕
𝟑 (c) 

and 𝒌𝒕
𝟒 (d), for different datasets, by changing the variables (period of the year, 

temperature series, gender and region, respectively). Very generally speaking, 

an underlying shape is observable for the parameters. The parameter 𝒌𝒕
𝟏 shows 

a decreasing and almost linear trend for all datasets, in line with the 

expectation. Parameter 𝒌𝒕
𝟐 seems to be the parameter most sensitive to data 

changes, and it is more difficult to describe it in an overall view. Parameter 𝒌𝒕
𝟑 

rises for the first 20-25 years and then decreases, while 𝒌𝒕
𝟒 behaves in the 

opposite fashion; however, their shape is not similar to a parabola, but rather 

                                                 
33 For more details, please see Chapter 3. 

34 In the original paper, Brouhns et al. used the force of mortality µ𝒙,𝒕 instead of the central mortality rates 

𝒎𝒙,𝒕. Nonetheless, they have been noted to coincide by supposing a constant force of mortality over the 

period. 

35 Instead of using the classic Newton-Raphson iterative procedure, a standard statistical software package 

is used (see package “gnm”, Turner and Firth, (2015)) since, according to Currie (2016), many stochastic 

mortality models may be considered as generalized linear or non-linear models. This is also the approach 

of the StMoMo package (Villegas, Millossovich and Kaishev, (2017)), which is extensively used in this 

thesis. 
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appears erratic and irregular. Eventually, the estimated values of parameters 

remain very similar when either the data’s period of the year (Fig. 6.1) or the 

temperature series (Fig 6.2) is modified, while they are somewhat sensitive to 

the gender variable (Fig 6.3), and to the region from which the data are sampled 

(Fig 6.4), notwithstanding the general shape which remains.  

(a) (b)

(c) (d) 
 

Fig. 6.1 - Estimated values of factors, data for males from Lazio considering the highest temperature.  

(a) - 𝒌𝒕
𝟏, (b) - 𝒌𝒕

𝟐, (c) - 𝒌𝒕
𝟑, (d) 𝒌𝒕

𝟒. 

 

(a) (b)

(c) (d) 

Fig. 6.2 – Estimated values of factors, cold months data for males from Sicily.  

(a) - 𝒌𝒕
𝟏, (b) - 𝒌𝒕

𝟐, (c) - 𝒌𝒕
𝟑, (d) 𝒌𝒕

𝟒. 
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(a) (b)

(c) (d) 

 

Fig. 6.3 – Estimated values of factors, warm months data from Lombardy, considering the average 

temperature. (a) - 𝒌𝒕
𝟏, (b) - 𝒌𝒕

𝟐, (c) - 𝒌𝒕
𝟑, (d) 𝒌𝒕

𝟒. 

 

(a) (b)

(c) (d) 

 

Fig. 6.4 – Estimated values of factors, annual data for females considering the lowest temperature. 

 (a) - 𝒌𝒕
𝟏, (b) - 𝒌𝒕

𝟐, (c) - 𝒌𝒕
𝟑, (d) 𝒌𝒕

𝟒. 
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6.1.3 Parameter uncertainty 

 

Studying the parameters’ uncertainty, in order to control the parametric risk, is 

very important when using Italian regional data because the population 

numbers are not very large. Therefore, due to the analytical intractability of the 

stochastic mortality models, the “semi-parametric bootstrap” method proposed 

by Brouhns et al., (2005) is employed: the bootstrapped parameters 𝒃𝒙
𝟏(𝒃)

, 𝒌𝒕
𝟏(𝒃)

, 

𝒌𝒕
𝟐(𝒃)

, 𝒌𝒕
𝟑(𝒃)

, 𝒌𝒕
𝟒(𝒃)

 and 𝜸𝒕−𝒙
(𝒃)

 (b= 1, …, 500) are yielded by re-estimating the model 

with each bootstrapped sample of the number of deaths 𝒅𝒙,𝒕
(𝒃)

 generated by 

sampling from the Poisson distribution with mean 𝒅𝒙,𝒕. 

In order to show several examples of the bootstrapping results, the 

parameter of the annual highest temperature for males from Lazio, the average 

temperature during the cold months for males from Lombardy, and the lowest 

temperature during the warm months for females from Sicily are plotted in 

Figures 6.5, 6.6 and 6.7, respectively3637. The uncertainty of the parameters 𝒃𝒙
𝟏, 𝒌𝒕

𝟏 

and 𝜸𝒕−𝒙 , which are the most “common” among the stochastic mortality 

models, is slight. With respect to the 𝒌𝒕
𝟐, 𝒌𝒕

𝟑 and mostly 𝒌𝒕
𝟒 parameters, the fan of 

the simulations is wider and indicates that the parametric risk may add more 

uncertainty to the projection of the central mortality rates 𝒎𝒙,𝒕 (see section 6.3.1 

and Fig. 6.17).  In any event, the results appear satisfactory. 

  

Fig. 6.5 – Bootstrapped parameters of the model for annual highest temperature, for males from Lazio. 

                                                 
36 Shades in the fan represent the confidence intervals at the 50%, 80% and 95% levels. 

37 Plots of all the other cases are available upon request. 
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Fig. 6.6 – Bootstrapped parameters of the model for the average temperature during cold months, for 

males from Lombardy. 

 

  

 

Fig. 6.7 – Bootstrapped parameters of the model for the lowest temperature during warm months, for 

females from Sicily, 

 

6.2 Goodness of fit 

 

The goodness of fit is investigated first by scanning the analysis of the residuals 

(section 6.2.1), and secondly by calculating two error measures (also comparing 

the results with those of the LC, P and OL models (section 6.2.2) and by 

checking their robustness (section 6.2.2.1). 

 



Chapter 6 – THE MODEL 

57 

 

6.2.1 Analysis of the residuals 

 

Inspecting the residuals of the fitted model is essential to check its fitting 

quality. Thus, the scaled deviance residuals are analysed: 

 

𝒓𝒙,𝒕 = 𝒔𝒊𝒈𝒏(𝒅𝒙,𝒕 − 𝒅̂𝒙,𝒕)√
𝒅𝒆𝒗(𝒙,𝒕)

𝝓̂
                    (32) 

 

Where: 

 

𝒅𝒆𝒗(𝒙, 𝒕) = 𝟐 [𝒅𝒙,𝒕 𝒍𝒏 (
𝒅𝒙,𝒕

𝒅̂𝒙,𝒕
) − (𝒅𝒙,𝒕 − 𝒅̂𝒙,𝒕)]                  (33) 

 

𝝓̂ =
𝑫(𝒅𝒙,𝒕,𝒅̂𝒙,𝒕)

𝑲−𝒗
                        (34) 

 

𝑫(𝒅𝒙,𝒕, 𝒅̂𝒙,𝒕) = ∑ 𝒅𝒆𝒗(𝒙, 𝒕)𝒙,𝒕                      (35) 

  

Where D is the total deviance, 𝒗 is the number of parameters and 𝑲 is the 

number of observations. 

In order to exhibit several examples, scatter plots of the residuals for males 

and females of the same samples shown in the previous section are plotted 

below (Figures 6.8, 6.9, 6.10, 6.11, 6.12 and 6.13)38. Except for the dataset 

displayed in Figure 6.11, where the graphs are not adequate, the analysis of the 

residuals shows a suitable goodness of fit considering the results which may be 

found in the literature for the other stochastic mortality models39. The scatter 

plots of the residuals by age often give good results, even if their variability 

sometimes rises for older ages (Figures 6.8 (a), 6.12 (a), and 6.13 (a)). The 

residuals also seem random along the calendar years. Even the scatter plots by 

year of birth display fairly random residuals, although a larger variability may 

emerge for the first-half of the cohorts (Figures 6.8 (c), 6.12 (c) and 6.13 (c)).  

                                                 
38 All other plots of the analysis of the residuals are available upon request. 

39 The scatter plots of the residuals have been largely used in Haberman and Renshaw (2011), for instance. 
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(a) (b) (c) 

Fig. 6.8 – Scatter plots of the residuals for females from Lazio, annual highest temperature.  

(a) (b) (c) 

Fig. 6.9 – Scatter plots of the residuals for males from Lazio, annual highest temperature.  

(a) (b) (c) 

Fig. 6.10 – Scatter plots of the residuals for females from Lombardy, average temperature during cold months. 

(a) (b) (c) 

Fig. 6.11 – Scatter plots of the residuals for males from Lombardy, average temperature during cold months. 

(a) (b) (c) 

Fig. 6.12 – Scatter plots of the residuals for females from Sicily, lowest temperature during warm months. 

(a) (b) (c) 

Fig. 6.13 – Scatter plots of the residuals for males from Sicily, lowest temperature during warm months. 
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6.2.2 Fitting quality measures 

 

A good model might give estimated mortality rates which do not differ much 

from those observed in the fitted period (1974-2011). Therefore, two error 

measures are calculated to scan the fitting quality of the proposed model, and 

the results are compared with those from the LC, P and OL models. The Mean 

Absolute Percentage Error (MAPE) refers to the absolute fitting quality, while 

Akaike's Information Criterion (AIC) considers the number of parameters, 

penalising the most complicated models.  MAPE is defined as: 

 

MAPE = 
𝟏𝟎𝟎

𝑵𝑴
 ∑ |

𝒎𝒙,𝒕−𝒎𝒙,𝒕̂

𝒎𝒙,𝒕
|𝒙,𝒕                      (36) 

 

Where N (N=38) is time dimension and M (M=66) is age dimension.  

AIC is performed40 to discover whether a better model fitting in terms of MAPE 

derives from over-parameterisation.  AIC is defined as: 

 

AIC = 2k − 2L (𝝍)                      (37) 

 

Where k is the number of parameters being estimated and L (𝝍) is the log-

likelihood of the estimated parameter 𝝍41. 

Findings are shown in Table 6.1 for MAPE and in Table 6.2 for AIC. For 

each dataset, the name of the expected best proposed model (among the ones 

related to the highest, average and lowest temperatures), in line with the 

findings of the correlation between 𝒎𝒙,𝒕 and temperature changes, is written in 

italics in order to discover whether it also gives the best fitting results42 (see 

section 5.3). Moreover, each proposed model which is preferable to the LC, P 

                                                 
40 The MAPE functions from the R package “MLmetrics” (for more details, see: https://cran.r-

project.org/web/packages/MLmetrics/), and the AIC function from the R package “StMoMo” (for more 

details, see: https://cran.r-project.org/web/packages/StMoMo/) are applied. 

41 In particular, k  is 178, 277, 277 and 314 for LC, P, OL and the proposed model, respectively. 

42 This logical expectation is, once again, supported by the findings of Secklecka, Pantelous and O’Hare. 

https://cran.r-project.org/web/packages/MLmetrics/
https://cran.r-project.org/web/packages/MLmetrics/
https://cran.r-project.org/web/packages/StMoMo/
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and OL models is indicated by boldface, and the absolute best one is 

highlighted. 

With respect to MAPE, better fitting is observed for all the proposed 

models as compared to the LC, P and OL models43. Apart from the LC model, 

which gives much higher errors, the average difference from the proposed 

model MAPE compared to the P and OL models is 0.06% for males and 0.05% 

for females. Regionally speaking, the average improvement is 0.04% for Lazio, 

0.07% for Lombardy and 0.05% for Sicily. Hence, the outputs indicate that the 

proposed model is a better fit for all these data. The next step is to analyse the 

AIC, since the model has many more parameters than the others, in particular 

the LC model.  

By using AIC, the proposed model loses its highest ranking for some 

datasets. Once again, dividing Italy into three regions has been revealed to be a 

good decision: Lombardy appears to be the region which benefits most from the 

proposed model, it being always the best choice for this region; moreover, for 

Lombardy, every proposed model is preferable to the LC, P and OL models for 

the warm months and all months. With respect to Sicily, the worst AIC results 

are given for the proposed model, showing the different behaviour44. The region 

of Lazio, finally, shows intermediate results that a proposed model is always 

selected for males, but never for females. In any case, the proposed model 

always gives the best AIC outputs compared to those of the LC model, and the 

differences between both the P and the OL models are always negligible; thus, 

the proposed model continues to represent a fine alternative. 

To summarise, in terms of MAPE, a better fitting quality is observed for all 

of the temperature-related factor models compared with the LC, P and OL 

models. Notwithstanding, sometimes the improvement is not very significant, 

considering that these models contain more parameters and are less 

manageable. In fact, one of the proposed models gives the smallest AIC only 

                                                 
43 Except for the lowest temperature during the cold months for males from Lazio. 

44 Except for the results obtained for all of the months for males. 
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half the time, despite remaining always preferable to the LC model and despite 

the very small differences with the P and OL models. Above all, and apart from 

what was expected, the temperature series which are more correlated with the 

mortality rates 𝒎𝒙,𝒕 (see section 5.3) are not the ones which give the smallest 

errors. Moreover, contrary to previous findings, using different temperature 

series (highest, lowest or average) gives very similar results. 
 

 

Table 6.1 – The MAPE of the models for the period 1974-2011. 
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Table 6.2 – The AIC of the models for the period 1974-2011. 
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6.2.2.1 Robustness check 

 

A good model must not be susceptible to the range of data used during the 

fitting process. Therefore, it is crucial to check the fitting robustness. So far, the 

models have been fitted by using an age range from 20 to 85 years and the 

period of 1974-2011; thus, the period of 2011-2016 may be used to compare the 

estimated forecasting results with the observed mortality rates. Therefore, the 

sample period is modified to 1974-2016 (43 years), 1974-2006 (33 years) and 

1974-2001 (28 years) in order to study the robustness. For each period, the 

parameters of the proposed, LC, P and OL models are fitted, and the results are 

compared by using the MAPE (equation 36) and the AIC (equation 37). Tables 

6.3 and 6.4 display the outputs of these measures for the 28-year retrospective 

period, which is the unsteadiest because of its reduced width of data as well as 

the period which shows the greatest differences, albeit still small, with the 

period of 1974-2011. Additionally, the findings for 1974-2016 and 1974-2006 are 

presented in Appendix B, and the analysis below applies to these periods, too. 

The MAPE continues to rank the proposed model as the best one, for each 

range of years45; moreover, every proposed model is always preferable to the 

LC, P and OL models46. The AIC continues to prefer the proposed model for the 

dataset of Lombardy and males of Lazio and Sicily (only for all of the months). 

By changing the retrospective period, some models sometimes change their 

position with respect to the P and OL models, but the ranking is not remarkably 

altered.  

In brief, the proposed model also does not change its behaviour by using a 

different range of data. Therefore, it features robustness. Hence, the same 

conclusions for the period of 1974-2011 are replicated for all the other periods: a 

stronger correlation between mortality rates 𝒎𝒙,𝒕 and temperature changes does 

                                                 
45 Except for the model for females from Lombardy during the warm months (period of 1974-2001), for 

which the OL model is preferable. 

46 The exceptions are for Sicily during cold months: the highest temperature-related model for males for 

the period 1974-2006 and the average for females for the period 1974-2016. 
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not affect the fitting quality. Moreover, the MAPE and AIC results are virtually 

identical irrespective of whether the highest, average or lowest temperature is 

used. Bearing in mind these great fitting findings, the proposed model is 

forecasted in the next sections, and all the relevant features are investigated and 

compared with the LC, P and OL models, to determine whether the proposed 

model maintains such good results. 

 

Table 6.3 – The MAPE of the models for the period 1974-2001. 
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Table 6.4 – The AIC of the models for the period 1974-2001. 
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6.3 Forecasting 

 

When considering the good fitting results, it is sensible to continue the analysis 

by forecasting future mortality rates. The only parameters to be forecast are the 

time-related ones as well as the cohort-effect, since the age-dependent factors 

are constant over time. The parameters 𝒌𝒕
𝟏, 𝒌𝒕

𝟐, 𝒌𝒕
𝟑, 𝒌𝒕

𝟒 and 𝜸𝒕−𝒙 are modelled as 

AutoRegressive Integrated Moving Average (ARIMA) (p,d,q) time-series 

processes, where the parameters p, d and q are non-negative integers, p is the 

order of the autoregressive model, d is the degree of differencing, and q is the 

order of the moving-average model: 

 

𝚫𝒅𝐘𝒕 = 𝜹𝟎 + 𝝓𝟏𝚫
𝒅𝐘𝒕−𝟏 +⋯+𝝓𝒑𝚫

𝒅𝐘𝒕−𝒑 + 𝝃𝒕 + 𝜹𝟏𝝃𝒕−𝟏 +⋯+ 𝜹𝒒𝝃𝒕−𝒒        (38) 

 

Where 𝜟 is the difference operator, 𝜹𝟎 is the drift parameter, 𝝓𝟏,…, 𝝓𝒑 are 

the autoregressive coefficients with 𝝓𝒑 ≠ 0, 𝜹𝟏,…, 𝜹𝒒 (𝜹𝒒 ≠ 𝟎) are the moving 

average coefficients and 𝝃𝒕 is a Gaussian white noise process with variance σ2ε. 

Following previous studies47, the cohort index 𝜸𝒕−𝒙 , which is the most difficult 

to handle (see Currie (2016)), is supposed to be independent from the period 

indexes 𝒌𝒕
𝟏, 𝒌𝒕

𝟐, 𝒌𝒕
𝟑 and 𝒌𝒕

𝟒. Thus, for each dataset48, the best ARIMA (p,d,q) time 

series are found and forecasted for 20 years (see, for example, Fig 6.14)49. 
    

    

 

Fig 6.14 – Parameters forecast for Lombardy males, average temperature during cold months. 

                                                 
47 See Renshaw and Haberman (2006), Cairns et. al (2011), and Lovász (2011). 

48 Obviously, different datasets return different ARIMA processes. Thus, the findings of the previous 

authors for their models over US or UK data might not be the best choice for Italian regional data. 

49 The auto.arima function from the R package “forecast” is used, which gives the best ARIMA (p,d,q) 

model according to the AIC  (for more details, see: https://cran.r-project.org/web/packages/forecast/). 

https://cran.r-project.org/web/packages/forecast/
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6.3.1 Simulations analysis 

 

According to Cairns et al. (2011), an easy way to explore the plausibility of the 

forecasting is to construct fan charts produced by simulations; therefore, 500 

simulations for each dataset are computed and analysed. Figure 6.15 shows, as 

an example, 25 simulations of the parameters and the central mortality rate at 

age 65 for the annual highest temperature-related model for females from 

Lazio. 

      

      

 
 

Fig 6.15 – Parameters and central mortality rate simulations for females from Lazio, annual highest 

temperature. 

 

By observing the fan chart plots50 of the models for a Sicilian male during 

the warm months (Fig. 6.16), it is obvious that every model shows different 

behaviours, and it may be stated that the LC model is not plausible for this 

dataset, since the fans at age 85 are narrower than at age 6551, contrary to the 

historical evidence. The fan charts of the OL model seem to be wider than those 

of the other models, while, when using the highest or the average temperature, 

the proposed model gives more downwards prediction than the others, 

especially for x=85. 

                                                 
50 The fan function from the R package “fanplot” is used (for more details, see: https://cran.r-

project.org/web/packages/fanplot/).  

51 This is a well-known issue with the LC model. 

https://cran.r-project.org/web/packages/fanplot/
https://cran.r-project.org/web/packages/fanplot/
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Fig 6.16 – Fan charts of predicted mortality rates at ages 65, 75 and 85 years, for Sicilian male, warm 

months52. 

Lastly, Figure 6.17 shows that the impact of the parameter uncertainty on the 

forecast is not properly remarkable. This figure displays the mortality rates of 

the highest temperature-related proposed model for a 60, 70 and 80-year-old 

male from Sicily, during the cold months, with a 20-year projection. For the 

period 1974-2011, dots represent raw data and black lines represent the fitted 

mortality rates. For the period 2011-2031, dashed lines show central forecast 

and black dotted lines indicate the 95% prediction intervals without the 

parameter uncertainty. Lastly, dot-dashed red lines indicate 95% prediction 

intervals including parameter uncertainty. 

 

Fig. 6.17 – Prediction of mortality rates for males from Sicily, highest temperature during the cold months. 

                                                 
52 The dots indicate historical rates from 1974 to 2011. Shades in the fan represent prediction intervals at 

50%, 80% and 95% levels. 



Chapter 6 – THE MODEL 

69 

 

6.3.2 Backtesting 

 

The main feature of a model’s forecasting process is that the projected mortality 

rates should be as similar as possible to the observed ones. It is possible to 

evaluate this similarity through backtesting. Table 6.9 shows the MAPE 

(equation 36) results of the out-of-sample test for each temperature-related 

factor model, and also compares them with those of the LC, P and OL models. 

All the models are fitted for the period 1974-2011, and the test concerns the 5-

year projection from 2011 to 2016.  

The findings for the proposed model show less improvement compared to 

the in-sample analysis (section 6.2.2). This result is not astonishing since is 

possible to find many examples in the literature of different rankings of 

mortality models by using either the in-sample or the out-of-sample test for the 

same dataset (see, for instance, Cairns et al. (2011)). 

 With respect to the region of Lazio, results for males remain great: the 

proposed model always gives a smaller MAPE than those of the LC, P and OL 

models. Moreover, the difference with the LC model is significant53. With 

respect to Lazio females, the proposed model continues to accurately fit the 

future data for cold months and all of the months by using the highest or the 

average temperature; nevertheless, the results for the lowest temperature and 

the warm months are considerably negative, compared to those of the other 

models.  

Unlike Lazio, where the expectations built by observing the in-sample AIC 

(see Table 6.2) are maintained, Lombardy does not retain them. In fact, while 

Lombardy is the best region in the AIC in-sample analysis, it emerges as the 

worst one for the MAPE out-of-sample test. For the highest temperature for 

males and the lowest one for females, both only during the cold months, the 

model shows errors in line with those of the P model, which turns out to be the 

                                                 
53 The LC model gives a 21.55%, 21.71% and 22.01% MAPE  for all of the months, cold months and warm 

months, respectively, while the highest temperature-related factor model, yields 6.28%, 7.43% and 7.03%, 

respectively. 
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best model for this region, and the OL model (they remain at approximately 

10%). All the other datasets display a MAPE of about 20%; nevertheless, they 

remain smaller than those of the LC model (except for females during all 

months)54.  

Lastly, Sicily is the region which displays the most different outcomes, 

especially for females. The proposed model shows improvements for half of the 

dataset: for the average temperature during cold months for males and for the 

lowest temperature during warm months and all of the months for females. 

However, Sicilian findings are not greater than those of the other regions55. 

Moreover, the LC model is generally the best model for Sicilian females. This 

suggests that the extensions of the P and OL models, from which the proposed 

model is constructed and which accurately fit the behaviour of some 

populations, may not work well for these data. 

Ultimately, compared to the LC, P and OL models, the highest temperature 

shows improvements for 4 of the 18 datasets, the average temperature for 5  of 

18 and the lowest temperature for 6 of them; moreover, the proposed models 

reveal themselves to be the absolute best model 3, 1, and 4 times, respectively. 

Without considering the LC, P and OL models and only focusing on the 

difference between the three temperature series, it is revealed that the highest 

temperature-related model as well as the lowest one show the smallest MAPE 

for 7 times of 18, while the average temperature-related model exhibits the 

smallest MAPE for only for 4 of the 18 datasets. Furthermore, the proposed 

model is superior for 4 over 6 datasets for the cold months, while for 2 for both 

the warm months and all of the months (which, however, means that the 

temperature-related factor model is a good competitor of the P and OL models 

for every period of the year).  

Considering the results displayed in Tables 6.10 and 6.11 in the next 

section, in which the robustness of the results is checked by performing 

                                                 
54 It is worth noting that the out-of-sample MAPE comparison made by the authors of the proposed model 

was only performed with the LC model. 

55 Except for the average temperature for females, where the error results are very high. 
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backtesting for the other two look-ahead periods (from 2006 to 2016 and from 

2001 to 2016), it will be possible to draw more general and significant 

conclusions.  

 

 

 

Table 6.9 – The MAPE of the forecast of the models for the period 2011-2016. 
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6.3.2.1 Robustness check 

 

In order to check the robustness of the results just presented, and to obtain 

more data for analysis, Tables 6.10 and 6.11 show the MAPE for the out-of-

sample test of the models fitted for 33 years (from 1974 to 2006) and 28 years 

(from 1974 to 2001), projected for 10 years (from 2006 to 2016) and for 15 years 

(from 2001 to 2016), respectively.  

With respect to the 10 years look-ahead period, the proposed model loses 

its top ranking for males from Lazio during all months but acquires it for 

females during the warm months. Thus, the highest temperature-related factor 

model shows the smallest MAPE for both warm months and cold months for 

each gender. The situation changes, however, when the horizon projection is 

increased to 15 years: now the highest temperature model is the best one for all 

of the months but not for the warm months or the cold months. Considering 

Lombardy, broadening the horizon period worsens the already bad results. In 

fact, the proposed model is never chosen, and for the 15 years of projection, the 

MAPE reaches incredibly high values56. With respect to the last region, Sicily, 

the proposed model with the lowest temperature-related factor always shows 

fewer errors for females during the period 2006-2016, but never for the period 

2001-2016, in which the LC model is selected. For Sicilian males, instead, only 

the lowest temperature during the warm months provides improvements (for 

the 15-year period). 

To summarise, the results of the proposed model are not very robust, and 

they often change by modifying the forecast horizon. Moreover, by using the  

highest, average or lowest temperature, or by analysing the warm months, cold 

months or all of the months, this may lead to observing illogical vast MAPE 

differences. Sometimes the proposed model gives good results, but other times 

                                                 
56 For example, for males, while the OL model gives a MAPE around 20%, the lowest temperature 

outcomes are 1035.16%, 316.99% and 5339.17% for warm months, cold months and all of the months, 

respectively. 
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its error is substantial. That is definitely not a good feature because it makes the 

model unusable for pricing financial instruments linked to human lives.  

Now it is possible to draw more general conclusions with respect to the last 

considerations of the previous section, which analysed for the period 2011-2016 

which temperature series, among the highest, the average and the lowest, was 

more meaningful for implementation in a stochastic mortality model and for 

which period of the year the proposed model showed more improvements.  

In total, the highest temperature shows improvements compared to the LC, 

P and OL models, for 11 datasets over 54 (20%), with the average temperature 

showing improvements for 6 (11%) and the lowest for 10 (19%) of them. 

Moreover, the highest temperature-related model turns out to be the best 

model, including of the LC, P and OL models, for 9 (17%) datasets, while the 

lowest temperature-related model was the best for 7 (13%) of them and the 

average temperature-related model was best only for 2 (4%) datasets. These 

results indicate that the highest and lowest temperatures should both be 

considered in further analyses since it almost never occurs that both show 

improvements for the same dataset57. Furthermore, by only investigating the 

ranking for these three temperature-related models – that is, by excluding the 

LC, P and OL models – the highest temperature-related factor dominates the 

others 20 times over 54 (37%), the lowest one for 23 times (43%) and the average 

one for only 11 (20%).  

With regard to the regions, the differences among them are evident. The 

proposed model improves the forecast quality of the mortality rates for Lazio 11 

times over 18 (61%)58, for Sicily 7 times (39%)59, and for Lombardy only 1 time 

(6%). This result is absolutely inconsistent with the others obtained so far. 

                                                 
57 The only exception is represented by males from Lazio, in which case, however, every proposed model 

is preferable to the others. 

58 In particular, the highest temperature is selected for all the 61% of the times and is almost always 

preferable than the average or the lowest temperatures, when they are all selected. 

59 With regard to Sicily, the lowest temperature improves the forecast of the 𝒎𝒙,𝒕 for 6 times over 18 (33%), 

and the average or the highest temperature are never selected when the lowest is. 
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The small difference between males, where the proposed model performs 

better for 8 times over 27 (30%), and female, where it performs better 11 times 

(41%) entirely derives from the region of Sicily (in which the values are 2 times 

over 7 (29%) for males and 5 times (71%) for females). 

Finally, by inspecting the differences between warm months, cold months, 

and all of the months, a proposed model is selected for 8 times over 18 (44%) 

during warm months, for 6 (33%) times during cold months and for 5 (28%) 

times during all of the months. Besides, there is no relevant relationship 

between the different periods of the year and the use of the highest, the average 

or the lowest temperature-related model; except for the average temperature 

and the cold months (such as the findings of Seklecka, Pantelous and O’Hare 

have noted). 

Therefore, the differences which emerge considering different periods of 

the year are not very remarkable and the analysis, at least for Italy, might refer 

to the entire year. A direct consequence of these results is that this model may 

be well-suited for many countries. The most important finding is that the 

highest and the lowest temperatures are much more significant for 

implementation in a mortality model with respect to the average one, in 

accordance with the studies showing the correlation between mortality and 

extreme temperatures. That is an absolute novelty in the literature and suggests 

that this analysis should be intensified in further studies. 
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Table 6.10 – The MAPE of the forecast of the models for the period 2006-2016. 
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Table 6.11 – The MAPE of the forecast of the models for the period 2001-2016. 
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Chapter 7 

 

Conclusion 
 

Many of the studies in the demographic literature have depicted the 

relationship between temperature fluctuations and mortality rates. 

Nevertheless, none of the existing mortality models has ever implemented a 

temperature-related factor, save the one proposed by Seklecka, Pantelous and 

O’Hare60. In this thesis, the emphasis of the study has been placed on the 

relationship between temperature changes (highest, average and lowest) and 

trends in mortality over the period 1974-2011, for a range of ages from 20 to 85 

years, and considering both males and females from three Italian regions: 

Lombardy, Lazio and Sicily as proxies of the North, Centre and South of the 

country.  

The strong negative correlations between the temperature series and both 

the Lee & Carter mortality index 𝒌𝒕
𝟏 and the age-specific central mortality rates 

𝒎𝒙,𝒕 have upheld the choice of fitting and studying the temperature-related 

model with Italian data. Although the population size was not very large, the 

parametric risk was not meaningful during the fitting and the forecasting 

process. Furthermore, the analysis of the residuals has shown that the errors are 

spread around zero rather randomly. Nonetheless, the better-fitting 

performance of the proposed model in terms of the MAPE, compared with the 

Lee &Carter, Plat and O’Hare and Li models, may have resulted from over-

parameterisation, since by adding penalisations for the number of parameters 

(AIC) the model partly loses its relative value. However, the great MAPE fitting 

results have been replicated during the forecasting process for only half of the 

datasets. This notwithstanding, the proposed model is almost always preferable 

                                                 
60 Seklecka M, Pantelous AA, O’hare C. Mortality effects of temperature changes in the United Kingdom. 

Journal of Forecasting. 2017; 36: 824-841. https://doi.org/10.1002/for.2473. 

https://doi.org/10.1002/for.2473
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to the Lee & Carter model and may still be considered a good competitor of 

both the Plat model and the O’Hare and Li model for some datasets. 

In conclusion, the various results among regions have once again shown 

that each population is different and there is not one single model which is 

always the best fit. Moreover, including a temperature-related factor improves 

the validity of this assumption for the remarkable climatic divergences 

worldwide.  

Nevertheless, differentiating among warm months, cold months and all of 

the months does not substantially alter the results; therefore, it may be 

unnecessary to divide the year into three periods and, as a direct consequence, 

this model may be used accurately for the most countries. Moreover, the 

findings from Italy have shown that the proposed model performs better for the 

highest and lowest temperatures rather than for the average temperature, in 

accordance with all the studies which show mortality is more correlated with 

extreme temperatures and with similar results found from studies of the UK for 

cold months.  

In any case, this is an absolute novelty in the literature and suggests that 

this analysis should be intensified in further studies. 

Therefore, implementing a temperature-related factor in stochastic 

mortality models might lead to more painstaking fitting of mortality rates, and 

to better assessments of the expected value of financial and insurance products. 

Nevertheless, the results from the studies of the association between mortality 

and temperature, both in the literature and in Chapter 5 in particular, as well as 

those of the AIC and MAPE for the fitting process, joined with the unsteady 

and not excellent findings for the forecast, suggest that it may be more 

appropriate to implement this temperature-related factor differently; it might 

be considered a time-dependent factor for the (highest and lowest) 

temperatures, which takes into account its future fluctuations.  
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Appendix A 

 

 

 

Fig A.5.7 – Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and average temperature for 

various periods of time for Lazio, by gender, from 1974 to the reported year. 
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Fig A.5.8 – Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and lowest temperature for 

various periods of time for Lazio, by gender, from 1974 to the reported year. 
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Fig A.5.9 – Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and highest temperature for 

various periods of time for Lombardy, by gender, from 1974 to the reported year.  
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Fig A.5.10 – Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and lowest temperature for 

various periods of time for Lombardy, by gender, from 1974 to the reported year. 
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Fig A.5.11 – Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and average temperature 

for various periods of time for Sicily, by gender, from 1974 to the reported year. 
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Fig A.5.12 – Robustness check of Pearson’s correlation coefficient between 𝒎𝒙,𝒕 and lowest temperature for 

various periods of time for Sicily, by gender, from 1974 to the reported year. 

  



 

90 

 

Appendix B 

 

 

 

Table B.6.5 – The MAPE of the models for the period 1974-2016. 
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Table B.6.6 – The AIC of the models for the period 1974-2016.  
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Table B.6.7 – The MAPE of the models for the period 1974-2006.  



APPENDIX B 

 

93 

 

 

 

 

Table B.6.8 – The AIC of the models for the period 1974-2006. 

 


	2.1 Longevity risk in Solvency II
	2.2 Current situation
	2.3 Risk Management
	3.1 Mortality laws
	Sx = {𝟏−,𝒙-𝝎.                            𝟎≤𝒙≤𝝎; 𝒙>𝝎             (1)
	Where ω is the maximum age (ω=86 for De Moivre). The main problem is that this model is not very realistic. Generalisations of this model were presented by De Graaf (1729) and Babbage (1823).
	According to Gompertz (1825), mortality exponentially rises with age; he introduced what is currently called the “force” of mortality:
	µx = 𝜶 ,𝒆-𝜷𝒙.      α > 0            (2)
	Makeham (1860) generalised the Gompertz mortality law by introducing a constant addend which for the first time took into consideration accidental causes of deaths, supposedly independent of the natural ageing:
	µx = γ + 𝜶 ,𝒆-𝜷𝒙.   α,β > 0 ; γ ≥ 0     (3)
	Both the Gompertz and the Gompertz-Makeham models give good results for middle ages, but they capture neither the high mortality at the earliest ages nor the bump in the mortality curve around the range of ages from 18 to 25. Some extensions, such as ...
	But first, it is interesting to show the Lexis (1878) model, in which the author hypothesises a Gaussian distribution of the age at death:
	f0(x) = ,𝟏-𝝈,𝟐𝝅.. ,𝒆-,,−(𝒙−,,𝒙..)-𝟐.-𝟐,𝝈-𝟐...     x ≥ x’            (4)
	Where ,𝒙. is the Lexis point and x’ is the minimum applicable age.
	The Weibull (1939) law for the force of mortality is mentioned, too, because of its widespread use in the reliability theory:
	µx = ,𝜶-𝜷.  ,(,𝒙−𝝑-𝜷.)-𝜶−𝟏.  x ≥ 𝝑              (5)
	Where 𝜶, 𝜷 and 𝝑 are positive parameters of shape, scale and localisation.
	,,𝒒-𝒙.-,𝒑-𝒙..  = ,𝑨-,(𝒙+𝑩)-𝑪.. + ,𝑫𝒆-,−𝑬(𝒍𝒏 𝒙−𝒍𝒏 𝑭)  -𝟐..,+ 𝑮𝑯-𝒙.           (6)
	Where A, B, C, D, E, F, G, H are parameters to be estimated. This model offers a proper fitting for the entire span of life, and it is used for some applications yet (see Fig. 3.1).

	3.2 Lee and Carter
	The central mortality rates have a log-bilinear shape:
	ln ,(𝒎-𝒙,𝒕.) = ,𝒃-𝒙-𝟏. ,+ ,𝒃-𝒙-𝟐.𝒌-𝒕-𝟏. + ,𝜺-𝒙,𝒕.               (7)
	Where:
	,𝒎-𝒙,𝒕. is the central mortality rate of people aged x in the year t. It is calculated as the ratio between the number of deceased people and the exposed to the risk both for age x and year t:  ,𝒎-𝒙,𝒕. =  ,𝑫𝒙,𝒕- 𝑬𝒙,𝒕..
	,𝒃-𝒙-𝟏. describes the average behaviour of the central mortality rate for every age. In addition, it ensures that the shape of the mortality curve conforms to the experience. By using the classic constraints (see Par. 3.2.1), this non-parametric te...
	,𝒃-𝒙-𝟐. is another non-parametric term, which explain how ln(,𝒎-𝒙,𝒕.) reacts to the passage of time. It is a sensitivity parameter of the velocity of the mortality rate’s response to ,𝒌-𝒕-𝟏. for every age:  ,𝒅𝒍𝒏(,𝒎-𝒙,𝒕.)-𝒅𝒕. = ,,𝒃-𝒙...
	,𝒌-𝒕-𝟏. represents a mortality changes index over time .
	,𝜺-𝒙,𝒕.  indicates the error term, the effects not captured by the model. The errors are assumed as i.i.d. with Normal distribution (0,σ2ε) (σ2ε<∞).
	This model is fitted with Italian data, and its parameters are plotted in Figure 3.3 to give a broader view of them . The exponential trend shape of ,𝒎-𝒙,𝒕. agrees with the opinion, currently verified, that the life expectancy increases over time, ...
	,𝒎-𝒙,𝒕.= exp (,𝒃-𝒙-𝟏.,+ ,𝒃-𝒙-𝟐.𝒌-𝒕-𝟏. +, 𝜺-𝒙,𝒕.)                  (8)
	The strongest points of the LC model are its simplicity and good fitting results. Nonetheless, it has two principal negative aspects. The first one is that it does not hold a cohort factor, although the evidence confirms that it should be added (see F...
	3.2.1 Estimation of parameters
	The LC model as described in equation (7) is underestimated. In fact, the terms of the second member are not observable. There is no unique parameterisation of the model, so some restrictions are required. The authors have applied these two constraints:
	,,,𝒙-,𝒃-𝒙-𝟐..=𝟏-,𝒕-,𝒌-𝒕-𝟏..=𝟎..               (9)
	Therefore, the ,𝒃-𝒙-𝟏. parameter results to be the temporal mean of the logarithm of the central mortality rates for every age x:
	,,𝒃-𝒙-𝟏.. = ,𝟏-𝑻. ,𝒕-𝒍𝒏(,𝒎-𝒙,𝒕.)  .                  (10)
	In order to calculate the optimal solution, the authors used Singular Value Decomposition (SVD), which is mathematically equivalent to performing the Principal Component Analysis (PCA) of the log-mortality rates’ covariance matrix. However, the ,,𝒃-�..
	3.2.2 Forecasting
	The ,𝒌-𝒕-𝟏. mortality index is the only parameter to forecast, since ,𝒃-𝒙-𝟏. and ,𝒃-𝒙-𝟐. are constant over time. The mortality index ,𝒌-𝒕-𝟏. is modelled and projected as a stochastic time series by using an appropriate AutoRegressive Integ...
	,𝒌-𝒕-𝟏. = ,𝒌-𝒕−𝟏-𝟏.+𝒅+,𝒆-𝒕.                (11)
	Where:
	𝒅 is the drift term.
	,𝒆-𝒕. is the error term, supposed Normal (0,σ2e)  distributed (σ2e<∞).
	The ,𝒌-𝒕-𝟏. standard error positively depends on the forecast horizon period s:
	,𝝈-𝒔. = ,𝝈-𝟏. ,𝒔.                       (12)
	Finally, it is possible to easily obtain ,𝒎-𝒙,𝒕. for every age x and year t.
	3.2.3 The Brouhns et al. (2002) proposal
	One of the main negative aspects of the LC model is that it implicitly assumes that the random errors, 𝜺-𝒙,𝒕. are homoscedastic, i.e. they hold the same variance among ages.
	That assumption is not very realistic, especially for older ages, where the small number of deaths produces statistical problems. Moreover, older adults are the most significant to study since most of the financial products linked to mortality refer t...
	ln(,𝒎-𝒙,𝒕.) = ,𝒃-𝒙-𝟏.,+ ,𝒃-𝒙-𝟐.𝒌-𝒕-𝟏.                                             (13)
	Dx,t ~ Poisson (Ex,t ,µ-𝒙,𝒕.)                                 (14)
	Where Ex,t is the number of the exposed to risk and ,µ-𝒙,𝒕. is the force of mortality. Therefore, a Poisson random variation of deaths confers heteroscedasticity to the error term and more realism to the model.

	3.3 Plat
	3.4 O’Hare and Li
	3.5 Other models
	3.5.1 Renshaw and Haberman (2006)
	3.5.2 CBD (2006)
	3.5.3 Cairns et al. (2008) criteria

	4.1 Mortality data
	4.2 Temperature data
	5.1 Trends in the LC mortality index and the temperature fluctuations
	5.2 Correlation coefficients between the LC mortality index and temperature fluctuations
	5.3 Correlation coefficients between the mortality rates (by ages) and temperature fluctuations
	5.3.1 Robustness check

	6.1 The model
	6.1.1 Estimation of parameters
	6.1.2 Model fitting
	6.1.3 Parameter uncertainty

	6.2 Goodness of fit
	6.2.1 Analysis of the residuals
	6.2.2 Fitting quality measures
	6.2.2.1 Robustness check

	6.3 Forecasting
	6.3.1 Simulations analysis
	Fig 6.16 – Fan charts of predicted mortality rates at ages 65, 75 and 85 years, for Sicilian male, warm months .
	Lastly, Figure 6.17 shows that the impact of the parameter uncertainty on the forecast is not properly remarkable. This figure displays the mortality rates of the highest temperature-related proposed model for a 60, 70 and 80-year-old male from Sicily...
	Fig. 6.17 – Prediction of mortality rates for males from Sicily, highest temperature during the cold months.
	6.3.2 Backtesting
	6.3.2.1 Robustness check


