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Introduction

Many studies have shown that pay-as-you-go pension systems are no longer
sustainable: most European countries are facing major pension challenges and
are no more able to guarantee stable incomes for retirees. The demographic
trend is very dramatic: on the one hand, mortality rates are decreasing, leading
to an increasing elderly population; on the other hand, birth rates are falling,
leading to a decreasing young population. Taking demographic development
into account, it is therefore evident that people are increasingly been called
on to take responsibility for their future retirement income. People need to
supplement the first public pension pillar with additional plans in order to be
sure that enough resources will be available in old age.
Moreover, in most public pension schemes, retirees are forced to convert their
accumulated funds into life annuities. The issue, however, is that the annuities
available on the insurance market are not sufficiently attractive for investors:
premiums charged are too high, and retirees prefer to benefit from a greater
degree of flexibility and an higher level of freedom.

In this work, I decide to examine some of the actions performed by the United
Kingdom as an exemplary way to overcome the previously presented issues.
The UK has, in fact, introduced two important reforms in recent years that
really try to accommodate consumer needs:

• The Automatic Enrollment in 2012 [25], which requires all employers to
enroll their eligible workers into a workplace pension plan. This choice
was designed to increase the amount of retirement savings for the entire
population.

• The Pension Freedom in 2015 [22], which allows people who have reached
the age of 55 to decide how, when and whether to access their pension
pot. The UK government tried to provide pensioners with greater flex-
ibility and to give them different options at their disposal. It enabled
people not to be forced to buy a typical annuity product with their ac-
cumulated fund, but to opt for other alternatives. Under the careful
guidance of qualified experts, retirees can therefore decide which decu-
mulation strategy is most suitable for them. Individuals can decide to
leave the pension pot untouched, buy an annuity, cash in the whole
pocket or drawdown their accumulated fund.
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Introduction

Hence, in this study I analyze in great detail the decumulation strategies pro-
posed in the literature. In particular, I decide to examine extensively a peculiar
product, seen as a valuable alternative to life annuities, called tontine. Ton-
tines were special forms of investment, dating back to the 17th century, in
which the investor paid a lump sum of money and received annual payments
of ’dividends’ until his death. The special feature of this product was that
when an investor died, his shares were divided among the surviving members
of the tontine. The tontine was thus seen as a group annuity in which the
investor living longer would get larger annual payments. Today, a growing
number of financial advisors, academics, and Fintech firms think that it might
be time to take a second look at these financial arrangements. Many authors
have examined whether an historical insurance concept such as the tontine
has sufficient innovative potential to extend and improve on prevailing private
pension solutions in a modern way. A recent stream of literature proposes and
analyzes modern versions of tontines. The main core of this thesis is therefore
devoted to the analysis and explanation of modern tontines proposed in the lit-
erature. In order to better understand the actual importance, innovation and
attractiveness of these products, in most of the analyses presented I introduce
comparisons with annuities. Tontines, unlike annuities, have no guarantee of
income, exhibit more volatile payments, but offer higher expected returns and
lower costs. Depending on the risk aversion preferences of individuals, tontines
can thus be seen as a better and more cost-effective way of restoring pensions.
The message I would like to leave out is that tontines can certainly be inter-
esting and valuable ways for people to fund their later years and thus solve
some of the pension challenges that many countries are facing.

The thesis is organized as follows: Chapter 1 is mainly devoted to the analy-
sis and description of decumulation strategies proposed in the literature; it is
made up of 4 sections. The first one is dedicated to the introduction of pen-
sion schemes in general; the second one is devoted to the analysis of a survey
conducted by Insurance Europe [15], regarding the importance of supplemen-
tary pension plans; the third one is reserved to the presentation of reforms
introduced in the UK; finally in the fourth section decumulation strategies
are explained. I will cover the analysis of many approaches, including: Util-
ity theory-based methods, such as Expected Utility Theory and Cumulative
Prospect Theory; techniques based on the minimization of the difference be-
tween current consumption and a desired consumption; probabilistic methods,
such the minimization of the probability of ruin; habit formation approaches.
Chapter 2 focuses completely on the explanation of modern tontines; each
section is dedicated to a specific tontine proposed in the literature. Consis-
tently, I submit the following proposals: the Group Self-Annuitization plan of
Piggott et. al(2016) [26], the Optimal Retirement Tontine of Milevsky and
Salisbury (2016) [20], the Fair Tontine Annuity of Sabin (2010) [27], the An-
nuity Overlay Fund of Donnelly et. al (2014) [9] and the Pooled Annuity Fund
of Stamos (2008) [30]. Chapter 3 is entirely devoted to the simulation of a
Group Self-Annuitization plan. Finally, Chapter 4 concludes.
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Chapter 1

Pension Decumulation Strategies

1.1 Introduction to pensions schemes

" Pension scheme means a contract, an agreement, a trust deed or rules stipulating
which retirement benefits are granted and under which conditions"

— Article 6 of Directive 2016/2341/EU - IORP II Directive

A pension scheme is organised in two phases: an accumulation phase in which
people set aside sums of money during their working life, and a decumulation
phase in which persons receive payments after retirement.
Consequently, the most important components to account for in a pension
scheme are the contributions made during the working life of a person and the
benefit that person will receive during retirement. We can therefore distinguish
two different types of monetary flows: before retirement people set money
aside, in order to receive payments in later life.
The main objectives of pension schemes are to protect against the risk of
poverty in old ages and to transfer resources from work to retirement, in order
to provide smooth consumption during the entire lifespan of people.

Considering the relationship between contributors and retirees there are two
kinds of pension systems:

• Pay as you go (PAYG): PAYG systems imply that contributions paid by
workers are directly transferred to retirees to pay their pension benefit.
Contributions are not accrued or invested in the market, there is not a
personal bank account, thereby there is not a direct link between contri-
bution paid and benefit received. Due to the key relationship between the
number of workers and the number of pensioners, PAYG systems must
ensure sustainability and long-term transaction periods that are deter-
mined by long longevity and low fertility trends. It is indeed important
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CHAPTER 1. PENSION DECUMULATION STRATEGIES

to take into account demographic changes to ensure the sustainability of
the system.

• Funded : in founded systems the contribution that each person makes
during his working life is transferred to a personal account, invested and
used to finance their own future pension. The performance of the pension
will depend on the market, and the returns of the underlying assets
are uncertain and variable. Such a system is not affected by changing
demographics, but it bears a much higher level of financial risk.

Depending on whether benefits or contributions are fixed, we can distinguish:

• Defined benefit pensions (DB): The pension provider promises a defined
benefit at retirement to the pensioner, based on a predefined formula
which depends on the earning history of the individual, his age ,working
life and possibly gender. Independently on the investment returns the
sponsor must honour his obligations and provide the fixed return agreed
in advance. In this type of pension system the risks are borne by the
pension provider: the retiree does not hold any type of risk, in fact he is
guaranteed a fixed amount per month forever.1

• Defined contribution pensions (DC): In DC plans contributions are made
on a regular basis and are paid by employers and employees as a fixed
percentage of the salary. The contributions paid during the working life
are set up into accounts and benefits received are proportional to the
amount contributed plus investment earnings. Benefits of DC plans are
not stable and fluctuate depending on investment returns: the pension
provider has not obligation to provide fixed returns. There are no guar-
antees in terms of final resources, and the retiree bears all pension risks.

Over the past few decades there has been a gradual shift from defined benefit
to defined contribution plans. The shift towards DC pension plans has been a
response to the under-funding of pensions, declining long-term interest rates,
increasing regulatory burden and uncertainty, recognition of the effects of in-
creased longevity on plan costs and increasing desire of the employer to get rid
of financial risk. There has thus been a progressive shift of risks from employ-
ers to employees, combined with a significant increase in the accountability of
individuals.

1In defined benefit pension schemes the employee pays a fixed percentage of his or her
salary as a pension contribution. By the other side the employer ensures a fixed benefit at
maturity: in order to guarantee such a coverage, considering that markets are uncertain and
fluctuating, he has to pay an additional variable contribution. Actuaries in fact calculate
each year the adjusted contribution rate that the employer has to settle in order to be able to
guarantee the promised return at retirement. There also exists the so-called "contribution
holiday": when the market performance is so good that the employer does not have to
contribute to the employee’s pension at all, in essence when the adjusted contribution rate
calculated by actuaries is zero.
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CHAPTER 1. PENSION DECUMULATION STRATEGIES

Finally, pension provisions are usually classified into pillars.
Pillar I corresponds to the Public Pension provided by the government, usu-
ally under a PAYG approach; Pillar II corresponds to occupational pensions,
where employers provide a pension designed as DB or DC plan, usually under
a funded in advance approach; and Pillar III refers to personal pensions and
covers individual saving plans typically set up on voluntary basis by house-
holds.

First Pillar pension schemes are typically publicly managed mandatory PAYG
systems historically based on the defined benefit principle. Now, as a result of
the many reforms adopted that have led to a gradual decay of defined benefit
plans, the first pillar consists mainly of notional defined contribution plans.
Pillar I can be seen as a basis for all the retirees, it should guarantee an ade-
quate pension for the whole population and its aim is to avoid poverty in old
ages. In general, it is organized as a pay-as-you-go system, where benefits at
retirement are determined by earnings, the number of contribution years, the
accrual rate and the indexation method. The typical final payout is an annuity
during retirement and it is very often indexed to inflation.
In order to reduce public liabilities, most reforms in Europe aim at reshaping
statutory public pension schemes: increasing life expectancy and falling birth
rates have led to an increase in the proportion of population dependent on
public pension schemes. For this reason, some countries implemented reforms
to ensure a dynamic adjustment to life expectancy such as increasing contri-
bution rates, raising the retirement age and changing the eligibility criteria for
early retirement schemes.

Pension schemes in Pillar II are occupational schemes that cover private em-
ployment related pensions plans. The purpose of the second pillar is to provide
a reasonable replacement ratio - i.e. ratio of pension income over the last wage
- to enable individuals to maintain consumption smoothing. Pillar II consists
of private pension schemes that come in the form of defined benefit or defined
contribution. Defined contribution plans are often collective schemes orga-
nized along occupation lines, are more flexible and allow individuals to choose
their own portfolio composition and risk profile. On the other hand, in defined
benefit plans the employer bears all the risks since benefits do not depend on
financial market returns.
Depending on countries and workplace the enrollment in Pillar II could be
mandatory: in the UK , starting from October 2012, the government made it
compulsory for employers to automatically enrol eligible workers into a quali-
fying workplace pension scheme. [25]

Pillar III Pensions schemes are voluntary, private and marked-based plans
based on the defined contribution principle. Pillar III makes some individu-
alisation of the replacement ratio possible and is available to everyone who
wishes to supplement the retirement income provided by the first two pillars.
It consists of private contract between individuals and financial institutions,
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CHAPTER 1. PENSION DECUMULATION STRATEGIES

in which the state does not intervene, except in the case of tax incentives.
These type of pension schemes can be seen as simple individual ways of saving
for retirement, where all the risks are borne by the individual. One particular
way to reduce costs and lower the risk exposure of Pillar III is to allow for vol-
untary contribution to be paid into an already existing collective occupational
defined contribution scheme in the second pillar.

Several studies have found that in countries where Pillar I schemes are pre-
dominant, private savings are lower. People know that the first pillar will be
able to guarantee them an adequate replacement rate and therefore do not
save further by integrating the other pillars into their pension.

Figure 1.1: Autonomous Pension Funds as a percentage of GDP

Source: OECD [29]
Note: Autonomous pensions funds represents all the assets bought with the contribution of
pension plans for the purpose of financing pension benefits, thus excluding Pillar I schemes

In Figure 1.1 we can see that countries such as the Netherlands, Iceland,
Switzerland and the UK (which in historical terms used Beveridgean2 plans)
invest an higher amount in autonomous pension funds, which means that these
countries are characterised by a larger amount of savings in the second and
third pillars.
On the other hand, countries such as Italy, Greece and France (that tradition-
ally exploited Bismarkian3 systems) invest very little in autonomous pension
funds, meaning that the first Pillar is predominant and people decide not to
supplement their savings using the other pillars, as can be seen in Figure 1.2.

2Under the Beveridgean system, social security benefits ensure for each citizen a basic
income, a flat-rate pension independently of occupation and earnings during active employ-
ment. Typically the size of the public plan is small and it is integrated with other pillars.

3In the Bismarckian system benefits are earnings-related and profession-related. These
programs therefore rely on a strong link between individual contributions from earnings and
individual pensions. Typically the size of the public plan is large and it is not integrated
with other pillars.

4



CHAPTER 1. PENSION DECUMULATION STRATEGIES

Figure 1.2: Size of contribution to Pillar 1,2 and 3 as a percentage of GDP

Source: OECD[29]

1.2 The importance of supplementary pensions
Demographic trends are constantly changing the face of the European con-
tinent: the proportion of the population over 65 has reached 19% and the
number of people aged 80 or over is expected to more than double by 2100.[2]
Taking population developments into account, it is clear that most European
countries will not be able to sustain a pay-as-you-go social security system and
that Europe will face major pensions challenges.
Accepting the consequences of ageing trends is an unavoidable requirement:
the decline in state pension provision can only be prevented by a steady in-
crease in the retirement age or by supplementary pension provision.
Individuals are therefore increasingly being called on to take responsibility for
their future retirement income through additional pension schemes, in order
to improve the estimated lower public pensions. Consumers must be primarily
responsible for their own destiny, and the second and third pillars of social
security must be integrated with the first public pillar.
However, according to the results of a survey conducted by Insurance Europe,
most European citizens do not supplement their pensions with additional plans
and do not set aside enough resources for old age.

Insurance Europe, the federation of continental insurers, surveyed more than
10 000 people in 10 countries in February 2020 to find out the retirement
preferences of people and their attitudes to saving.[15]
The first worrying conclusion of the survey concerns the inadequate number
of Europeans allocating savings flows to instruments designed to supplement
their basic pensions.
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In the 10 countries investigated (Austria, France, Germany, Italy, Luxembourg,
Poland, Portugal, Spain, Switzerland and Hungary) as many as 43% of the
respondents are not saving for their future supplementary pensions. Almost
half of the interviewed are not saving for retirement.

Figure 1.3: Savers for retirement through a supplementary pension

Responses are also influenced by personal circumstances such as age, gender
and employment. Among women, the share of those who do not save rises to
47% and the same is true for young people aged 18-35. Level of education also
influences savings choices and reduces the behavioural bias in financial choices
as shown in Figure 1.4.

Figure 1.4: Respondents not saving

(a) By Gender (b) By Age

(c) By education level
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CHAPTER 1. PENSION DECUMULATION STRATEGIES

The survey shows that the main reasons why European citizens do not save
for their retirement are as follows:

• 42% of "non-savers" can not afford it economically. In fact, given the
large amount of compulsory contribution rates in the basic social security
system (33% of the salary for Italian employees), there are not enough
resources available to finance complementary social security.

• 15% of citizens who are not setting aside sufficient resources for old age
plan to do so in the future. The delay in starting an additional pension
plan is a sign of a trend well known from the behavioural finance liter-
ature: individuals systematically procrastinate on saving decisions and
prefer instead immediate consumption.

• 28% of people who do not integrate their first pension pillar are not
interested in the topic. The absence of awareness of their own future and
the lack of information needed to make the right decisions lead people
to neglect supplementary pension provision and not save enough.

Among the respondents to the European survey, by far the highest priority
when saving for retirement is the security of the money invested: the guar-
antee is one of the most important requirements that people look for in their
retirement choices.

Figure 1.5: Pension saving priorities

For 60% of respondents, safety of
investments is a priority. This ex-
plains why most European investors
prefer insurance-based pension prod-
ucts. Obviously, the more uncer-
tain and volatile the benefits offered
by the first pillar become, the more
savers demand greater certainty and
protection from the second and third
pillars. In order to plan their future
efficiently, families need stability: in
the past, it was the state that pro-
vided insurance for its citizens; today,
individuals are asked to be more re-
sponsible for their own future, but to
do so they need safeguards.

Looking at graph 1.5, we can clearly see that flexibility is the second priority
in people’s social security preferences: 33% of respondents consider it essential
to explore personalised and tailored solutions. Flexibility requires proactive
behaviour from households: in the first pension pillar, citizens’ freedom is
strongly limited by rigid requirements and public finance constraints; on the
other hand in complementary pension systems the choices are left entirely to
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the retiree. For this reason, interviewees demand flexibility at different stages
of the investment: in the accumulation phase, in the allocation strategy, in
the amount of contributions and also in the decumulation phase. Individuals
want to be free to choose what to do with the money they have accumulated
during their working life.

Finally, another surprising insight from the Insurance Europe survey concerns
pay-out preferences. Responses to the survey show that life annuities are by
far the preferred benefits for savers, chosen by 46% of respondents. In contrast,
30% of people favour flexible withdrawals, scheduled at regular intervals but
for a defined period of time, and finally 24% of people chose to receive the
capital set aside in a lump sum.

Choosing an annuity as the preferred form of benefit has the advantage of
hedging against longevity risk by ensuring a gradual consumption of savings.
However, the results of the survey should be interpreted and compared with
the actual behaviour of savers: once they are faced with the real choice between
a capital of 50 000€ and a life annuity of 2 500€ per year for their whole life,
there is an equal split between those choosing annuities and those choosing
lump sums. It is therefore not always the case that retirees prefer annuities
to lump sums: it is thus necessary to give them the possibility to choose their
preferred pay-out method.
In the UK a wide range of reforms have been made to the pension system that
seek to meet the needs of pensioners, as shown in the European survey just
analysed. In the next section I will focus on these.

1.3 Pension freedom
In order to overcome the issue discussed in the previous section, i.e. the prob-
lem that people are not saving enough for their pensions, in 2012 the UK
government made important changes to how workplace pensions work.
With the introduction of the Automatic Enrolment all employers must in fact
automatically enrol their eligible workers into a workplace pension scheme un-
less the worker chooses to opt out. There is a minimum total amount that
has to be contributed by workers and employers in the form of tax relief. As
a result, many more people have been able to accumulate larger savings for
their retirement. Overall, occupational pension membership increased by 30
percentage points since the inception of automatic enrolment from 47% in 2012
to 77% in 2019.[25]
As can be clearly seen in Figure 1.6 after 2013 participation in workplace pen-
sions in the UK increased a lot, mainly caused by a growth in membership of
occupational defined contribution plans. With this choice, the UK government
has successfully found a way to increase the savings of the population and solve
a major problem.
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Figure 1.6: Proportion of employees with workplace pensions in the UK

Source: Office for National Statistics[25]
Note: The “group personal and group stakeholder” category includes group personal
pensions, group stakeholder pensions and group self-invested personal pensions

From 6 April 2015, another major change has been introduced in the UK: the
Pension Freedoms reform. [22]
Pension freedoms only apply to defined contribution pension funds and allow
people who have reached the age of 55 to decide how, when and whether to
access their pension pot. Whereas previously, people almost always had to
buy an annuity with their pension fund, they now have more options at their
disposal. Once again in the UK the government has tried to meet the needs
of pensioners, by providing them with greater flexibility during the phase of
decumulation of investments.
There are indeed now six retirement alternatives that pensioners should con-
sider:

• Leave the pension pot untouched and invested in the market. There are
no requirements for the pensioner to take his money immediately; he can
decide to keep the pension fund intact and take his money later on.

• Get a guaranteed income. Retirees can use their entire pension pot
to buy an annuity, which provides them with a regular and guaranteed
income for life. There are many different types of annuity and the benefits
received will depend on the specific characteristics of individuals and
their lifestyle.

• Seek an adjustable income called flexi-access drawdown. With this op-
tion retired people can take 25% of their pot as a single, tax-free lump
sum; the remaining 75% of the fund stays invested in the market to pro-
vide them with a regular taxable income. The value of the fund that
remains untouched can go up or down as it is invested in the stock mar-
ket; therefore the amount of financial risk involved in this option is high,
and some advice on how to manage investments may be needed.
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• Take money in chunks. It is another form of drowdown option where
the pensioner can decide how much and when to take money until the
pension pot runs out. Each time individuals take chunks of money, 25%
is tax free and the rest is taxable. This option is known as Uncrystallised
Funds Pension Lump Sum (UFPLS) and once again, it is important to
rely on financial advice in order to make the fund last as long as possible.
There are many drawdown rules proposed by financial literature that I
will describe in the next section.

• Cash in the whole pot in a lump sum. Individuals can withdraw the
entire pension fund in one single amount, but usually it is subject to
taxes. If people opt for this option, they should be cautious to avoid
spending all their money in one go.

• Mix the above options. One of the most important things of the Freedom
Reforms is that retirees can really have freedom about what to choose.
They are not forced to select just one option, they can mix them over
time or on their total pot.

In the following graph we can see how pensioners reacted to pension freedom
and which were their decumulation preferences: many consumers withdrew
their pension pot in full or opted for drawdown products.[10]

Figure 1.7: Consumer’s choices after pension freedom

Source: Financial Conduct Authority[10]

However, freedom to choose is not enough, people must have freedom to make
informed choices.To support consumers in making their retirement choices,
the government has indeed introduced Pension Wise[22], a national pension
guidance service offering free and impartial guidance for people aged 50 and
over. The service operates online, via telephone or face to face and provides
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guidance on pension options by looking for the most suitable alternative for
the individual and by planning long term strategies. But evidence suggests
that a considerable proportion of consumers, particularly those with a low
accumulated pension pot, are making decumulation decisions without taking
advantage of the service offered by the government and without seeking pro-
fessional financial advice.
The Financial Conduct Authority (FCA) Retirement Outcomes Review found
that the proportion of consumers purchasing drawdown products without ad-
vice grew from 5% before the Pension Freedoms legislation to 30% in 2016.[10]
A large number of people started buying drowdown products, which are char-
acterized by high financial risk and can ruin out, without fully understanding
the consequences of their choice. These products may offer greater returns
but are riskier. Precisely for this reason, a high degree of flexibility in choices
should be combined with knowledge and consciousness.

In the next section I will review and analyse in detail some of the decumula-
tion strategies proposed in the literature, especially focusing on the drowdawn
environment, in order to provide greater disclosure on this issue.

1.4 Decumulation Strategies
As I have extensively discussed in the previous section, decumulation may be
an immediate decision, taken at the time of retirement, or it could be a series
of decisions taken throughout the pensioner’s life. The retiree can either make
a unique choice - i.e. use all his accumulated wealth to buy a life annuity, or
withdraw the entire fund in one go - or he could adopt and update a decumu-
lation strategy for his entire lifespan.
The main problems are faced in the second case, as costumers have to consider
both investment and withdrawal strategies. Individuals should indeed decide
how much to withdraw periodically from the accumulated fund, considering
that the lifespan of anyone is unknown, and choose the optimal investment
strategy to follow for the remaining pension savings. These two issues must be
assessed together: it is not enough to choose an optimal investment strategy if
people badly decumulate their fund. Pensioners should therefore be driven by
advisors who manage their portfolios efficiently, to ensure them a sustainable
income for a lifetime. Certainly this is a difficult problem to settle, but I will
review in the following subsections some proposed approaches in the literature.
I will cover the analysis of many approaches, including: Drawdown rules de-
rived from experience, Utility theory-based methods, such as Expected Utility
Theory and Cumulative Prospect Theory; techniques based on the minimiza-
tion of the difference between current consumption and a desired consumption;
probabilistic methods, such the minimization of the probability of ruin; habit
formation approaches.
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1.4.1 Drawdown Rules derived from experience
In this section I outline the main approaches widely used in practice in a
drawdown environment.

Whereas life expectancy is unknown, common practical advices on drawdown
are often based on the simplified assumption that there exists a fixed lifes-
pan which is considered unlikely to be exceeded. Based on historical series or
simulated data, consultants makes for instance the assumption that the max-
imum number of years left to live after retirement are 30, taking into account
a retirement age of 65 years.

One possible drawdown strategy could therefore be the 1/30 rule.[4]
The idea is to split the fund accumulated into thirty equal proportions and
annually pay out one part to the pensioner. In order to maintain the long-term
value of each segment, the fund is invested in the financial market: the amount
of the withdrawal will therefore fluctuate directly with investment returns. The
main problem with this type of strategy is however that if the pensioner lives
more than 30 years, he outlives its resources, exhausts his fund too early and
ends up with no savings before he dies.

Similarly another widely used rule is the safe withdrawal rate (SWR) , some-
times known as the "4% rule" when the SWR is set equal to 4%.[4]
The retiree invests in a constant-mix strategy of bonds and stocks through-
out a 30 years retirement period and he withdraws an inflation-linked income
each year. This method tries to prevent worst case scenarios, related to the
uncertainty of life expectancy, market returns and future expenses, by encour-
aging pensioners to withdraw only a small percentage of their fund each year,
typically 3% to 4%. There is intended to be a 90% probability of success for
this type of strategy, meaning that in 90% of cases the income is expected to
last for at least 30 years. The numerical value of the safe withdrawal rate is
the first year withdrawal income divided by the pension fund at the time of
retirement.
For instance if the accumulated savings are $800 000 and the retiree withdraws
$35 000 as income in the first year, the SWR would be 4.3% (35 000 / 800 000).
Assuming that the inflation is 5% over the first year, the second year’s with-
drawal amount would be $36 750 ($35 000 · 1.05)
The idea is to maintain the real value of the first year’s income for the entire
lifespan. This strategy pays a stable income in real value terms to the retiree,
irrespective of market returns, but also in this case the fund may no last for
30 years.
SWR has been criticised on two further reasons :

• For the stable real value income: Milevsky and Huang[17] illustrate a
life-cycle problem, underlying how the longevity risk aversion affects the
retirement spending rates. They find that only very high longevity risk
aversion leads to stable withdrawal rates.
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• For the constant mix investment strategy: Scott et al. [28] point out the
inefficiencies of the SWR approach by showing that options or dynamic
investment strategies could ensure better outcomes for the same cost or
same outcomes at lower cost. Therefore they shown that a retiree using
a 4% rule follows a wasteful strategy in many possible scenarios, as there
are wasted surpluses when risky investments outperform, which leads to
an excess of asset at the end of 30 years.

Hence, another drawdown rule is to make the income withdrawal dependent on
investment returns. This rule results in a dynamic income strategy that adjusts
the withdrawal income according to what investment returns and inflation
have been experienced. The main idea is that the retiree cash in part of his
investment gain when returns have been particularly good, while the income
is reduced when returns have been negative. The investment strategy remains
constant, a proportion of the fund is always invested in equity, but according
to the market, the income is adjusted.
Guyton and Klinger[14], based on their expert judgment, established principles
of dynamic income strategies and showed that their rules lead to higher safe
initial withdrawal rates compared to previously published results, which do not
take into account income adjustments. They defined the probability of success
as the chance that at least $1 remains in the retiree’s account after 40 years
of withdrawal. Then they tested their results considering three different types
of equity allocation: 50%, 65% and 80%. They found that when portfolios
contains at least 50% shares, initial withdrawal rates of 4.6% are sustainable
at a 99% confidence level. Whereas portfolios composed of a larger amount
of equity allocation provide more purchasing power - i.e higher level of initial
withdrawal rate - while maintaining a slightly lower probability of success.

Another possible rule to be adopted in the drawdown environment is a dy-
namic investment strategy. Now withdrawal rates vary during the lifespan,
according to the asset allocation strategy. Many studies shown that rising
equity glide-paths in retirement – where the portfolio starts out conservative
and becomes more aggressive through the retirement time horizon – have the
potential to actually reduce both the probability and the magnitude of failure
for client portfolios. Fullmer[12] argues that this strategy is strictly related
to the longevity risk: longevity risk tends to decrease with age, given that
the probability of outliving resources decreases with time; so by contrast the
investor can afford to take more investment risk and to increase his exposure
to equity as time passes.

1.4.2 Expected Utility approach
Another common decumulation strategy is to model explicitly consumer’s pref-
erences through utility functions.
According to the expected utility theory, the way to determine the optimal
amount of consumption, and the optimal amount of wealth invested in risky
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assets, is to maximise, with respect to some decision variables such as con-
sumption and/or investment strategies, the expected discounted utility of con-
sumption:

E
[∫ T

0
e−ρsu(c(s)) + e−ρTv(X(T ))

]
(1.1)

where:

• u represents the utility of consumption and reflects preferences and risk
aversion behaviour of the investor.

• c(s) represents consumption, i.e. the amount which must be withdrawn
from the pension fund at each point in time s.

• e−ρs is a discount factor, that accounts for the time preferences of in-
dividuals, since more distant consumption is less liked. ρ is called the
time-preferences rate.

• T is the terminal date: usually it is a random variable since it represents
the life expectancy.

• v is the terminal condition. It reflects the preferences of the retirees
concerning the importance of remaining savings at the terminal date T .
It could reflect the intention to leave a bequest or to ensure that as little
as possible is left.

• X(T ) represents the pension fund at time T . Usually the dynamic of
the fund is modeled according to the Black and Scholes rule: the market
consists of only one riskless asset earning interest at a constant rate and
one risky asset whose price follows geometric Brownian motion.

dX(t) = [rX(t) + (µ− r)α(t)X(t)− c(t)]dt+ α(t)σX(t)dW (t) (1.2)

X(0) = Initial Fund

where µ is the mean rate of return of the risky stock, r is the risk free
rate, σ is the volatility of the risky stock and W is a standard Brownian
motion. α(t) represents the proportion of wealth invested in risky stock
at time t, and usually it is a decision variable. The idea is that the fund
evolves according to this rule: at each point in time it is equal to the fund
at the instant before, plus earnings from risky and riskless investments,
minus withdrawals.
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Some Examples
A large number of authors have tried to implement an expected utility max-
imisation problem in order to find the optimal level of withdrawals that a
pensioner should follow. There are many standard choices for utility func-
tions, but some shapes are more suitable to obtain close form solutions.
One of the most well know and widely used class of utility function is the
CRRA, which stands for constant relative risk aversion.

u(c) = c1−γ

(1− γ)

where γ reflects the level of risk aversion of individuals.

As mentioned in the previous section, Milevsky and Huang[17] criticised the
SWR rule because of the smoothness of withdrawal rates, and in doing so, they
solved an expected utility maximisation problem. The authors deliberately
ignored market risk to focus on the role of longevity risk aversion in determining
optimal consumption (or spending) during a period of stochastic length. They
thus assumed that a pensioner faces random lifetime, but that investment
returns are known and unvarying: only life spans are stochastic. Moreover, an
additional fixed income is expected to be obtained as state pension or annuity
and a CRRA utility function is considered.

Computationally they solved the following problem:

max
c

[
E
∫ T

0
e−ρsu(c(s))ds

]
= max

c

∫ T

0
spx · e−ρs · u(c(s))ds (1.3)

where spx is the survival probability for an x-year old to live up to x+s years,
parameterized using Gompertz-Makeham law of mortality.
The pension fund’s wealth X now obey:

dX(t) = [rX(t)− c(t) + π]dt (1.4)

where π is the (constant) pension income.
They solved the problem by considering different levels of longevity risk aver-
sion γ and some important results are shown in Figure 1.8

Milevsky and Huang found the optimal amount of money that should be with-
drawn at any given point in time, for different levels of risk aversion. Assuming
a 65-year-old with a (standardized) $100 initial accumulated fund, we can see
that the optimal consumption path is decreasing with age, and that only high
level of risk aversion lead to smoother withdrawal.
They point out that only under a very limited set of implausible preference
parameters, life-cycle consumption are smoothing and for this reason they
criticized the SWR rule.
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Figure 1.8: Optimal consumption path with π = 5$, r=2.5% and X(0) = 100

Note: Consumption at each age is equal to the sum of the constant pension income and the
optimal withdrawal amount. For instance the consumer with a CRRA of 1 (i.e., very low
aversion to longevity risk and u(x) = ln(x) will start retirement by withdrawing $8 from
his fund and by receiving a pension income of $5. Its total initial consumption is therefore
equal to $13.

Another important study that seeks to find optimal decision rules by maxi-
mizing the expected discounted utility function was developed by Andésson et
al.[1]
It is an Australian study, in which the pensioner receives a fixed income dur-
ing retirement through a state pension, and he should decide how much to
withdraw from his accumulated fund and how much to invest in risky assets
in each point in time. In addition, the model extends the setting described
by other studies by allowing the retiree to choose the proportion of wealth H
allocated to housing at retirement. It is a more complicated study that takes
into account the randomness of stock’s returns, that allows the proportion of
fund invested in equity to vary over time, and also involves bequest in the
utility function. The authors solved the following maximization problem:

max
c, α, H

E
[∫ T

o
e−psu(c(s), H) + e−pTv(X(T ))

]
(1.5)

Considering that the dynamic of the pension fund now satisfies:

dX(t) = [rX(t) + (µ− r)α(t)X(t)− c(t) + P (t)]dt+ α(t)X(t)σdW (t)4 (1.6)

Subject to:

X(0) = Initial Fund - H

They calibrated the model with Australian empirical data for consumption
and housing, and estimated suitable parameters via the maximum likelihood
method. They were therefore able to find the optimal housing level H at
retirement, optimal consumption c(t) and optimal risky asset allocation α(t)
for each time, considering different levels of initial wealth.

4P(t) is the means-tested Australian pension
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1.4.3 Minimize distance from a Target
Optimal solutions obtained by maximising the expected utility function usually
lead to constantly varying income during retirement. To tackle this problem,
another possible decumulation approach could be the introduction of a refer-
ence consumption level to be met at each age.
The idea is to set desired levels of intermediate consumption at each age and
to fix a final desired level of wealth. By minimising the distance between ac-
tual consumption and desired consumption over the lifetime of the retiree, it
is possible to estimate optimal investment and consumption strategies.
A quadratic function is usually applied to measure the distance from with-
drawal income and fixed target. Thus the problem consists in minimizing:

E
[∫ TD

0
e−ρs(c(s)− b(s))2ds+ θe−ρTD(X(TD)− F (TD))2

]
(1.7)

where

• c(s) represents actual consumption at time s.

• b(s) represents the desired level of consumption at time s.

• X(TD) is the actual level of final wealth, and it follows a dynamic ac-
cording to the Black and Scholes model.

• F (TD) represents the desired level of final wealth at time TD.

• TD is the final date, which could be random since it represents the indi-
vidual’s life expectancy.

• e−ρs is a discount factor, that accounts for the time preferences of indi-
viduals.

• θ is a constant which reflects the importance of final wealth target com-
pared to intermediate consumption levels.

Some Examples
A significant study by Gerrard et al.[13] on defined contribution pension plans
employed the technique of minimising the distance from a target to find optimal
withdrawal and investment strategies.
In this study an important assumption is made: the pensioner chooses to
defer the annuity, meanwhile consuming some income withdrawn from the
fund and investing the remaining fund. The authors hypothesized that the
reasons for the retiree to choose the option of deferring an annuity are either
the hope of being able to buy a higher annuity in the future than the pension
income provided by the immediate annuity at retirement or the possibility of
bequeathing wealth in the event of death before annuitization. They assumed
that the pensioner has three different types of goals during the decumulation
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phase: a target for the size of the fund, a desired level of income to be consumed
and a desired level of annuity. The idea is that a disutility is experienced
whenever deviations from targets occur, and a utility is experienced in the
event of death before full annuitisation, due to the bequest motive.
They described:

• A disutility function due to deviations (from desired consumption and
fund targets) before annuitization:

L(t, x) = e−ρt[µ(F (t)− x)2 + v(b0 − b(t))2] (1.8)

Where F(t) is the running target for the level of the fund at age t, x is the
actual value of the fund at time t which evolves according to (1.2) , b0 is
the target level of income periodically withdrawn from the fund during
the drawdown phase and b(t) is the actual amount of consumption at
time t. µ and v are weights given to the desire to monitor the fund and
the daily consumption and ρ is the usual discount factor.

• A disutility function due to deviations (from desired annuity) at the time
of annuitization T:

K(T, x(T )) = e−ρT [(b1 − k · x)2] (1.9)

Where b1 represents the target value of income from the annuity pur-
chased at age T and k can be seen as the amount of annuity provided
by the insurance company at age T for one unit of capital. Compulsory
annuitization occurs at time T.

• A utility function due to bequest in case of death before annuitization,
at time TD

M(TD, x(TD)) = e−ρTDx (1.10)

Where x is the actual value of the fund at time TD and TD represents
the time of death of the individual.

Optimal investment and consumption strategies can be estimated by min-
imising the following function, which brings together all the concepts just
described.

E
[∫ min(T,TD)

0
L(s, x(s)) + θK(T, x(T )1{TD>T} − ηM(TD, x(TD))1{TD<T}ds

]
(1.11)

Where θ and η are weights given to the importance of reaching the final annuity
level b1 and to the ability to leave a bequest.
By minimizing (1.11) the authors were able to find optimal value of running
consumption b(t) and optimal equity allocation α(t).
An important conclusion of the study seems to be that weights given to the
level of running consumption v, and weights given to the realization of final
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annuity θ play an important role. Only a good trade off between the two could
lead to meet all the target levels desired by the pensioner.

The previous study is not able to guarantee optimal solutions which avoid ruin
fully. To address this problem Di Giacinto et al.[7] added some constraints
on wealth and on investment strategies. Therefore they considered the same
setting of Gerrard[13], but they imposed short selling constraints and required
that the final fund cannot be lower than a certain pre-determined level S ≥ 0.
The idea is that they solved the usual minimization problem (1.11), without
considering the bequest motive, and assuming the following constraints:

α(t) ≥ 0 and x(T ) ≥ S

1.4.4 Habit Formation
A more plausible representation of preferences is to allow for habit formation,
meaning that the utility of a given level of current consumption is also a
function of the level of past consumption.
The idea is to model a new type of utility function, which depends both on
current consumption ct and on the standard living of an individual ht. Thus
utility is not time separable but exhibits habit persistence.

U = u(ct, ht) = u(ct − ht)

where
ht = e−ath0 + b

∫ t

0
ea(s−t)c(s)ds (1.12)

with h0, b, a ≥ 0
As can be seen from (1.12) ht is a measure of the habit level of consump-
tion, and it is a weighted average of past consumption rates. The weights are
exponentially decreasing so that most recent consumption rates are more im-
portant. The constant h0 is the initial habit level, a is a persistence parameter
and b is a scaling parameter.

The idea is therefore the following: in order to have a positive utility the client
require consumption above the habit level. The higher is the habit standard
living of a client, the more he would like to consume. Moreover, the stronger
is the habit persistence, the more averse is the consumer to a fall in consump-
tion. It is an excess in current consumption over and above the habit which
increases current utility.
Optimal investment and withdrawal strategies must ensure that future con-
sumption rates are as high as past consumption rates, in order to maintain the
habit formation.
Thus the "new" problem consists in maximizing:

E
[∫ T

0
e−ρtu(c(t)− h(t))dt

]
(1.13)
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Some Examples
Munk[23] derived optimal consumption and investment policies for investors
with habit persistence in preferences for consumption when the financial mar-
ket provides time-varying investment opportunities. In line with most of the
literature he assumed, both for tractability and for easy comparison, that the
instantaneous utility function u(ct, ht) is power-linear, i.e. that

u(ct, ht) = (ct − ht)1−γ

(1− γ)

where γ is the usual risk preference parameter.

The author assumed that the fund evolves according with the usual dynamics
proposed by Black and Scholes, and he further required that the consumption
strategy is financeable, i.e. its present value cannot exceed the fund of the
investor.
By maximizing (1.13) he was able to derive optimal strategies in concrete
setting, such as in a stochastic interest rate model. As previously mentioned,
due to habit formation, the optimal investment strategy must ensure that the
habit consumption level is reached. The consumption rate is required to exceed
the habit level : the habit level plays the role of a minimum or subsistence
consumption rate determined by past consumption rates. The main result
of the study is therefore the following: low-risk assets are better suited than
higher-risk assets. The main effect on asset allocation comes from the fact
that some assets (bonds and cash) are better investment objects than others
(shares) when the aim is to ensure that future consumption does not fall below
the habit level.

Another important study by Bruhn and Steffensen[5] allow for habit forma-
tion. Their setting is a combination of habit formation and minimization from
a target. They indeed included the habit formation in their utility function
but at the same time they tried to control the rate of change of consump-
tion. Instead of allowing consumption to be rapidly adjusted, they minimized
a quadratic objective function over a fixed time horizon, allowing also for a
bequest motive. The general idea is to minimize the distance between changes
in consumption rate and a target. The control variable is not consumption
but the acceleration of consumption over time. The motivation is that people
are very focused on the increase in welfare, regardless of their current level of
consumption.
Their model, roughly speaking, consists in minimize (1.8) but instead of con-
trol the distance between optimal consumption c(s) and a desired level of
withdrawal, they minimize the gap between [c(s)− h(s)] and a target level of
increase in wealth.
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1.4.5 Cumulative Prospect Theory - based objective func-
tion

A substantial body of evidence shows that decision-makers systematically vi-
olate the Expected Utility Theory and deviate from full rationality. For this
reason, new theories have been developed in response to empirical challenges
and the Cumulative Prospect Theory is one of the alternative models proposed.

The Cumulative Prospect Theory is a descriptive theory as it is based on the
real behaviour of individuals and is able to model real needs and attitudes of
consumers. The Expected Utility Theory, on the other hand, attempted to
give common and general rules, by assuming a full rationality of investors and
without taking into account behavioral biases.
Tversky and Kahneman[31], based on experimental evidence, proposed the
CPT and modeled the expectation of an event as:

E [v(x)] =
n∑

i=−m
πiv(xi) (1.14)

where

• xi represents gain or loss with respect to a reference point. If for instance
consumption is the relevant object and we set the reference level as c0,
then every outcome below c0 is defined as a loss and represented with
a negative number ci − c0 = xi < 0. Similarly outcomes above c0 are
defined as gains and represented with a positive number ci−c0 = xi > 0.
The m losses and n gains are moreover ordered such that

x−m ≤ x−m+1 ≤ ... ≤ x−1 ≤ x0 ≤ x1 ≤ ... ≤ xn−1 ≤ xn

• πi are not the usual probabilities of an event, but are probability weights,
calculated through probability weighted functions. Typically πi = w(p, x)
where w(·) is the probability weighted function and usually it is not a
probability measure; p is the usual probability associated to an event and
x represents the gain/loss. There are two different weighted function for
losses and gains. For instance Tversky and Kahneman proposed

w(p, gain) = w+(p) = pγ

(pγ + (1− p)γ)
1
γ

w(p, loss) = w−(p) = pλ

(pλ + (1− p)λ) 1
λ

estimating the parameters γ = 0.61 and λ = 0.69.
This type of decision weights are able to capture an important be-
havioural aspect of investors: they tend to overweight events that have
a low probability and to underweight events that have moderate or high
probability. As can be clearly seen from the figure below, w(p) > p for
small p, while w(p) < p for high p, both in the case of gains and losses.
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• v(·) is a value function that assigns numerical values to gains and losses
xi. The value function reflects investors’ preferences and their attitude
to risk. Unlike the standard concave utility function under the Expected
Utility Theory, here the value function is S-shaped, i.e. it is concave in
the gain domain, and convex in the loss domain. The idea is that the
consumer is risk-averse above the reference point, preferring to lock into
a gain rather than gamble the possibility of a larger gain; while the in-
vestor is risk-lover below the reference point, as he prefers to risk a large
loss - with the possibility of moving into the gain domain - rather than
lock into a certain one.
Moreover the value function is able to capture another important be-
haviour: people are loss averse. They suffer more from a loss of an
amount of money than they enjoy when they earn the same amount. A
financial gain of $500 does not compensate the investors for a financial
loss of $500. For this reason the value function is steeper in the loss
domain, while it is flatter for gains.
An example of value function proposed by Tversky and Kahneman is the
following:

v(x) =

xα if x≥0
λ(−x)β if x<0

where α and β define the curvatures and λ represents the degree of loss
aversion.
Here the graph of the value function proposed by Tversky and Kahneman.
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It is technically much more difficult to derive analytical solutions for an investor
who behaves in line with Cumulative Prospect Theory compared to Expected
Utility Theory. The first issue to overcome is the research of the reference point
against which gains and losses are defined. Furthermore the value function is
partly concave but partly convex, which makes it more difficult to obtain close
form solutions. In addition decision weights, that replace probabilities, add
further complexity to the problem.

Some Examples
Van Bilsen et al.[32] explored and derived optimal portfolio and consump-
tion choices of investors who behave in line with CPT. They maximized the
expected value function of future consumption over a dynamic reference con-
sumption level. Indeed, the consumption reference level changes over time
according with the habit formation based approach, and it is endogenously
updated over time. The problem consists in maximizing:

E
[∫ T

0
e−ρtv(ct, θt)dt

]
(1.15)

where

• The expectation is calculated through standard probabilities rather than
with decision weights.

•

v(ct, θt) =

(ct − θt)γG if ct > θt

−k(θt − ct)γL if ct < θt

It represents the usual value function under Cumulative Prospect Theory
which takes into account loss aversion of investors.
A standard assumption of conventional life-cycle models is that relative
risk aversion is constant. Here the relative risk aversion depends on how
close current consumption is to the individual’s reference level.
The authors showed that consumer can fall into three category of states
of nature: normal states in which consumption remains at (or slightly
above) the reference level; good states in which consumption is substan-
tially above the reference level; and bad states in which consumption
falls below the reference level. This leads to a state-dependent relative
risk aversion: a loss-averse individual chooses optimal consumption and
portfolio strategies depending on the state in which he ends up.

•
θt = e−αtθ0 + β

∫ t

0
e−α(t−s)csds

It represents the reference level of consumption constantly updated on
the basis of past habits: it is a weighted average of past consumption
with the last five years contributing at least 80% of the weight.
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The authors solved for the optimal dynamic consumption and investment strat-
egy.5 They found that loss averse investors protect current consumption after
a decrease in their pension savings, postponing reductions in current consump-
tion following a wealth drop.
Furthermore, the individual’s optimal portfolio weight in the risky stock is not
constant across states of nature as is predicted by the conventional CRRA
model, but rather depends on the state of nature. The individual implements
a conservative investment strategy in normal states and typically a more ag-
gressive strategy in good and bad states, as can be clearly seen in figure 1.9.

Figure 1.9: Optimal Portfolio choice of loss-averse individuals

Note: The figure shows the optimal investment strategy of a 65-year-old loss-averse indi-
vidual as a function of the annualized stock return. The dash-dotted lines show the behavior
of a CRRA individual with relative risk aversion equal to 2. The gray areas represent the
probability density function of the annualized stock return.

We can notice that in normal states, a loss-averse individual adopts a (very)
conservative portfolio strategy to prevent that consumption falls below the
reference level. The optimal portfolio strategy is much less conservative in
good states of nature. Indeed, in good states, a relatively aggressive portfolio
strategy most likely does not lead to a loss with respect to the reference level
in the near future. In bad states, a relatively aggressive portfolio strategy will
increase the chance of realizing a future gain with respect to the reference level
(but can eventually deplete consumption).

5They converted the individual’s optimization problem with endogenous updating of
the reference level into an equivalent dual problem without endogenous updating of the
reference level. They solved the dual problem by using the martingale approach and then
they transformed the optimal solutions of the dual problem back into the optimal solutions
of the individual’s original problem.
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Van Bilsen et al.[32] also computed the welfare loss (in terms of the relative
decline in certainty equivalent consumption) associated with the conventional
CRRA strategy and analyzed the roles played by the reference parameter.
When the reference consumption is fixed at the level θ0 the loss averse indi-
vidual suffers a minimum welfare loss of 3%, whereas when the individual has
an endogenous reference level constantly updated , the minimum welfare loss
is likely to exceed 10%.
The significant welfare losses incurred by the implementation of less subopti-
mal conventional policies, such as the CRRA, highlight the importance of an
appropriate model capable of describing consumer behavioural aspects.

1.4.6 Minimizing the Probability of Ruin
Another way of determining optimal investment and withdrawal strategies is by
using probabilistic methods. A number of papers have considered the problem
of minimizing the probability that a retiree outlives his wealth, also known as
the probability of ruin in retirement. The approach is based on minimising the
probability that a retiree will end up with no savings before he or she dies: the
idea is to avoid depletion of resources before death. The arguments in favour
of this approach are:

• It is a more general criteria which does not take into account investors’
risk aversion. Contrary to the expected utility theory approach in which
the goal of maximizing expected discounted utility of consumption and
bequest depends on a subjective utility function - i.e on subject risk and
time preferences - here the problem appears more objective.

• Communicating the approach of minimizing the probability of being ru-
ined is easier than communicating the idea of lifetime utility to a con-
sumer.

Mathematically the problem consists in minimizing the probability of ruin
before death, starting at time t with wealth x:

P [τa < τd|X(t) = x, td > t] (1.16)
where:

• τd represents the random time of death of an individual.

• τa represents the first time at which the fund value X hits the ruin level
wa, which is the minimum fund level that can be reached.

τa = inf{t ≤ 0 : X(t) = wa} (1.17)

• X is a stochastic process which represents the investor’s fund value and
it evolves according to the usual formula (1.2)

Closed-form solution are difficult to obtain for ruin problems and often sim-
plified assumption must be made in order to obtain analytical results. For
instance, the retiree’s force of mortality is usually assumed deterministic or
the withdrawal amount is taken as constant.
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Some Examples
The first paper to determine analytically the optimal investment strategy that
minimizes the probability of ruin is by Young[33]. She considered two possible
withdrawal strategies: (1) the individual consumes a constant amount c, (2)
the retiree consumes a fixed percentage of his wealth pX. She assumed a con-
stant force of mortality and a financial market consisting only of a risky asset
(which follows a Geometric Brownian Motion) and a risk-free asset: as already
mentioned simplified assumptions are essential to obtain a tractable problem.
She was able to determine the optimal investment rule that tells individuals
how much money to invest in the risky asset for a given wealth level and to
calculate the probability that individuals outlive their wealth if they follow the
optimal investment strategy proposed - i.e. the probability of ruin.
She also determined the sensitivity to various parameters of the optimal in-
vestment strategy and the main conclusions reached are:

• The higher the mortality rate, the lower the proportion of wealth invested
in the risky asset. If the probability of dying is higher, the individual
is less likely to outlive his or her savings and therefore does not need to
invest as aggressively in the risky asset to ensure the consumption rate
for so many years. The idea is as follows: since the individual has a
shorter expected lifespan, he can afford to make less risky investments
(which guarantee higher returns in expected value) and to invest more
conservatively.

• The higher the volatility σ2 of the risky asset, the less consumers invest
in the risky asset. Consumers would like to ensure that their wealth
does not reach the level of ruin, so they prefer to remain more conserva-
tive when the risky investment becomes too dangerous and returns too
volatile.

• The higher is the consumption rate, the more people invest in the risky
asset. In order to support an adequate and high level of consumption,
consumers must try to obtain higher returns: only investing in riskier
positions can ensure this goal.

• The optimal investment amount in the risky asset is a positive, decreasing
and linear function of wealth. Wealthier consumers can afford to be more
conservative and sustain their ideal level of consumption with their own
savings, even without investing aggressively in risky activities.

In general, for the most part of the paper, results are realistic and reliable:
changes in the ruin probability and the asset allocation are consistent with
financial intuition and empirical evidence. However, when consumption is
constant, Young[33] found that for wealth near zero, the optimal strategy is
a heavily-leveraged position in the risky asset: in an attempt to escape ruin,
the investor tries to achieve higher returns by borrowing money and investing
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them in the risky asset. Although the objective of minimizing the probability
of lifetime ruin is intuitively appealing, this leveraging at low wealth is not.

To avoid this leveraged situation Bayraktar and Young[3] considered two model
changes: one completely eliminates the leveraging by imposing borrowing and
short selling constraints on the investor; and one reduces the leveraged situ-
ation by allowing the consumer to borrow money but only at a rate that is
higher than the rate earned on the risk-free asset. The authors used the same
set-up as Young, considering again the two forms of the consumption function
and assuming a constant force of mortality. By minimizing the probability of
ruin they were able to find optimal investment strategies.
Under the no-borrowing constraint, when the consumption function is con-
stant, the optimal investment strategy results a truncated version of the opti-
mal investment strategy in the unconstrained case: in fact, when the investor’s
wealth is above a reference level, the investment strategy turns out to be the
same as it is under the unconstrained case; whereas when the investor is close
to the ruin level he invests all his wealth in the risky asset.

1.4.7 Annuitization
An alternative strategy able to significantly reduce or to completely eliminate
the chance of running out of money before death is the annuitization. People
can convert their accumulated fund into a specified income stream for a certain
period of time, or for their whole lifespan. Annuities are thus products that
are capable of eliminating longevity risk for the consumer and transferring
it to the insurance company. Economic theory suggests that people should
incorporate an annuity into their decumulation strategy, particularly when
there is not bequest motive or when the longevity risk aversion prevails. Yet
there are just few countries where people buy them voluntary. As mentioned

Figure 1.10: Composition of product purchases (by pot size) (%)

Source: Financial Conduct Authority[11]
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in the previous subsection, in the UK since 2015 consumers can freely choose
their optimal decumulation strategy. However, if we look at the figure above,
which shows the percentage of products purchased between March 2017 and
October 2018 (for different pot sizes), we can clearly see that the amount of
annuities purchased voluntarily is actually very low.

There are many different types of annuity product available on the market: in
this subsection I will describe just a few.

• Immediate Lifetime Annuity paid in advance: it is a contract between
an individual and an insurance company that pays the annuitant a guar-
anteed income for life starting almost immediately. Individuals typically
buy immediate lifetime annuities by paying a lump sum of money to the
insurer at time 0, i.e. when the consumer decides to annuitize. The
insurance company, in turn, promises to pay the annuitant a regular in-
come, according to the terms of the contract. Regular payments start to
be paid at time 0 and continue to be paid at the beginning of each time-
interval until the death of the insurer. Here a graphic representation of
the policy, if we assume an insured aged 65.

The amount of annuity payouts is calculated by the insurer, based on
factors such as the pensioner’s age, prevailing interest rates, and how
long the payments are to continue, i.e mortality rates.
Ideally, the expected present value of the payment stream matches the
initial premium paid by the retiree, making it a fair annuity. Assuming
annual and unitary payments, the present value of future benefits is a
random variable Y with distribution:

Y =



1 qx

1 + v 1|1qx

1 + v + v2
2|1qx

... ...

1 + v + v2 + ...+ vm m|1qx

... ...

v represents the discount factor equal to 1/(1+ i), where i is the constant
interest rate of the market.
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m|1qx represents the probability that a retiree aged x dies at an age be-
tween x + m and x + m + 1. The general idea is the following: if the
pensioner dies during the first year his benefit would be only 1; if he dies
between x+ 1 and x+ 2 the present value of his benefit will be 1 + v; if
he dies between x+ 2 and x+ 3 it will be 1 + v + v2 and so on...
The expected present value of Y, as well as the single premium paid at
time zero for an immediate lifetime annuity, is:

E[Y ] =
+∞∑
h=0

(1 + v + v2 + ...+ vh) h|1qx

=
+∞∑
h=0

vh · hpx
def=

+∞∑
h=0

hEx
def= äx

hEx is a mathematical notation denoting the premium that must be paid
at age x in order to receive a unit payment in h years.
äx is an actuarial notation defining the expected present value of an
immediate lifetime annuity paid annually in advance to a policyholder
aged x.

• Deferred Lifetime Annuity paid in advance: it is a contract very similar
to the Immediate Lifetime Annuity, but instead of providing benefits
from time 0, the insurance company defers payments. The pensioner
pays the single premium at time 0 but regular incomes start to be paid
out at time m > 0 and continue to be paid at the beginning of each
time interval until the retiree dies. Here a graphic representation of the
policy, if we assume an insured aged 65 and deferral time of 20 years.

In this case, considering annual and unitary payments, the distribution
of the random variable Y of the present value of future benefits is:

Y =



0 mqx

vm m|1qx

vm + vm+1
m+1|1qx

... ...

vm + vm+1 + vm+2 + ...+ vm+h
m+h|1qx

... ...
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If the pensioner dies before the deferral time he will receive nothing; if
he dies at an age between x+m and x+m+1 the present value of future
benefits will be only vm.
Again, if a fair annuity is assumed, the expected present value of future
benefits is equal to the value of the single premium paid by the pensioner
and results now to be:

E[Y ] =
+∞∑
h=0

(vm + vm+1 + vm+2 + ...+ vm+h)m+h|1qx

= mEx ·
+∞∑
h=0

hEx+m
def= mEx · äx+m

def= m|äx

m|äx is an actuarial notation denoting the price of a deferred lifetime
annuity issued to a pensioner aged x and that starts payments after a
deferral time of m years.

• Immediate Temporary Annuity for n years paid in advance: the regular
payments provided by this type of policy start to be paid at time 0, when
the pensioner decides to annuitize his savings, and continue to be paid at
most for n years. If the insured dies before n years he is covered against
longevity risk, whereas if he survives up to x+n−1 years he receives his
last annuity income at time n − 1 and then nothing. Here a graphical
representation of the annuity.

Assuming once again annual and unitary payments, the present value of
future benefits is a random variable Y with distribution:

Y =



1 qx

1 + v 1|1qx

1 + v + v2
2|1qx

... ...

1 + v + v2 + ...+ vn−1
n−1px

The payments of benefit continue until the death of the policy holder or
until time n− 1, whichever occurs first.
As before, in order to compute the value of the single premium paid at
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time 0 by the pensioner, the expected present value of future benefits is
derived:

E[Y ] =
n−1∑
h=0

(1 + v + v2 + ...+ vh) h|1qx

=
n−1∑
h=0

vh · hpx
def=

n−1∑
h=0

hEx
def= äx:ne

äx:ne is another actuarial notation representing the expected present value
of an immediate temporary annuity paid annually in advance. A pen-
sioner aged x pays äx:ne at time 0 in order to receive unit payments until
death or up to n− 1, depending on which event comes first.

• Deferred Temporary Annuity paid in advance: it is a contract very simi-
lar to the Immediate Temporary Annuity, but instead of providing bene-
fits from time 0, the insurance company defers payments. The pensioner
pays the single premium at time 0 but regular incomes start to be paid
out at time m > 0 and continue to be paid at the beginning of each time
interval until whichever occurs first between the death of the retiree and
m+ n− 1. Here a graphic representation of the policy, if we assume an
insured aged 65, deferral time of 20 years and n=8 years.

Assuming as always a fair annuity it is possible to compute the single
premium as the expected present value of future benefits:

E[Y ] =
m+n−1∑
h=0

hEx = mEx
n−1∑
h=0

hEm+x = mEx · äx+m:ne = m|äx:ne

m|äx:ne is the actuarial notation denoting the single premium paid in
advance by an insured aged x, in order to receive, starting from time m,
unit payments until death or up to m + n − 1, whichever occurs first.
It can be notice that m|äx:ne corresponds to an immediate temporary
annuity started at time x+m, discounted using mEx.

All the products presented so far involve payments in advance; there are also
products similar to those described above, but characterised by payments in
arrears, i.e. at the end of the time interval.
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Another assumption of the annuities presented so far is that the single premium
paid by the policyholder is invested in a risk-free asset yielding an interest rate
equal to i. However, there are more complicated products on the market that
require careful financial management and elaborate actuarial calculations. For
example, some policies may require a portion of the premium to be invested
in risky assets, shares, financial options or to be managed in a dedicated way
by life office managers.
Moreover, not all annuities are fair: in most cases the expected profit for the
insurance company is not zero, i.e. the value of the single premium paid by the
retiree (the net premium) does not correspond to the expected present value of
future benefits. In order to have a solvency margin and to be sure of covering all
expenses, the insurer must apply a safety loading to the net premium, increase
the cost of the policy and charge the client at a gross premium (higher than
the net one).

The decision for the retiree is therefore not easy: considering the large number
of products available on the market, the retiree has to choose the most suitable
for him or her, the one that best reflects his or her preferences. In addition,
the pensioner is faced with another important choice: he has to determine the
optimal time to annuitise. Indeed, depending on the degree of risk aversion
of the insured, on market trends, on the life expectancy of the pensioner and
on the fairness of the annuity, the optimal annuitization time varies widely
among investors. And further, another decision to which the retiree is subject
is: should I partially or totally annuitise? What portion of the fund should I
allocate to an annuity?
Many papers tackled with this problems: some authors tried to determine
the optimal time to annuitize, others determined the optimal annuity strategy
considering different types of markets, others calculated the loss suffered by
the retiree when forced to immediately annuitize at retirement, and yet others
proposed new typology of annuity products.

Further, in many papers annuities were benchmarked against an other impor-
tant product which is catching on around the world: the tontine. Indeed, the
tontine is an innovative and attractive alternative pension decumulation strat-
egy. I will analyze in detail its characteristics, history, and proposed literature
versions in the following chapter.
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Modern Tontine

Tontines were special forms of investment, dating back to the 17th century, in
which the investor paid a lump sum of money and received annual payments
of ’dividends’ until his death. The special feature of this product was that
when an investor died, his shares were divided among the surviving members
of the tontine. The tontine was thus seen as a group annuity in which the
investor living longer would get larger annual payments. In fact, as members
of the group died, they were not replaced by new investors, but the shares
were divided among fewer and fewer members. The surviving investors liter-
ally profited from the death of their fellows: the shares for remaining members
increased as more members died and the last investor alive collected the en-
tire pot. When all the investors died, the tontine ended, and the government
usually absorbed the remaining capital.
Here is an example: imagine a group of 1000 soon-to-be retirees who join
together and pool $1,000 each to purchase a $1 million Treasury Bond (per-
petual, whose nominal value will never be redeemed), which pays 3% coupons.
The bond generate $30,000 in interest yearly, which is split among the 1,000
participants in the pool, for a 30,000/1,000 = $30 income per year per mem-
ber. In the tontine scheme members agree that if and when they die, their
guaranteed income of $30 will be split among those who are still alive. If one
decade later only 800 original investors are alive, the $30,000 coupon is divided
only among 800 members, providing a $37.50 dividend each. Of this, $30 is
the guaranteed income and $7.50 is the mortality credit, the other people’s
money. Then, if after two decades, only 100 individuals survive, the annual
cash flow to survivor will be $300 per annum. This procedure theoretically
continues as long as there is still a survivor in the pool.

It is obvious that tontines were special products that could offer a solution
to longevity risk: in this context, the longer the life span, the greater the
benefit received. The risk of outliving resources is significantly reduced and
consumption is more sustainable. However, the downside of those members
with a bequest motive is that the assets of the dead are not passed to their
estate, but are divided among the tontine group.
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Today, a growing number of financial advisors, academics, and Fintech firms
think that it might be time to take a second look at these financial arrange-
ments. Many authors have examined whether a historical insurance concept
such as the tontine has sufficient innovative potential to extend and improve
on prevailing private pension solutions in a modern way. A recent stream of
literature proposes and analyzes modern versions of tontines. Modern tontines
allow people to get the benefits of longevity risk pooling without having to buy
a life annuity. As already mentioned, the popularity of annuities has declined
over the years because people are afraid of not realising a return on their in-
vestment before they die. Considering that modern tontines have lower costs
and higher expected returns than annuities, they could be a safer and more
cost-effective way of restoring pensions. Moreover, although payments are not
as fixed as annuities, they will not decrease.
Modern versions of the tontine could be interesting and valuable ways for
people to finance their final years.

There exists two different kinds of modern tontines versions:

• Explicit tontine: In the explicit tontine there is an explicit rule about
how assets of dead members are shared. Each year individuals receive
an explicit longevity credit into their individual account, usually called
mortality credit. The Fair Tontine Annuity by Sabin(2010) [27], the An-
nuity Overlay Fund by Donnelly et al.(2014) [9] and the Pooled Annuity
Fund by Stamos(2008) [30] are examples of explicit modern tontines.

• Implicit tontine: In the implicit tontine the individual receives an income,
which is implicitly adjusted according to the mortality experience of the
group. The Group Self-Annuitization of Piggott et al.(2005) [26] and the
Optimal Retirement Tontine(2016) of Milevsky and Salisbury [20] are
examples of implicit tontines.

In the following sections I will analyse in great detail the modern implicit and
explicit versions of tontines proposed in the literature. Considering the great
opportunity that tontines could offer to investors, as decumulation strategies,
I considered it appropriate to devote a entire sections to the full explanation
of such products. All of the modern tontines that I will analyze present some
common characteristics and some peculiarities. For each of the proposed mod-
ern tontines I will examine benefits, payout rates and the wealth dynamic of
individuals. In some cases I will also present comparisons with typical insur-
ance products available in today’s market, in order to better understand the
attractiveness of these policies. But first, let’s have a look at their history and
origins.

34



CHAPTER 2. MODERN TONTINE

2.1 History of Tontine
The word ’tontine’ comes from the name of Lorenzo de Tonti. Lorenzo de
Tonti was the governor of Gaeta and a Neapolitan banker who served as exile
financial consultant to the French crown in the 1650s and promoted the scheme
which now bears his name.
In the early 1650s the French treasury was battered by the Thirty Years’ War
and the rebellions within France known as the ’Fronde’ and needed to raise
money. King Louis XIV required money to finance the war and support his
military. He used to collect money by raising taxes and issuing bonds, but
bonds were too expensive and taxes could not be raised too much. Lorenzo de
Tonti therefore proposed the original tontine to Jules Cardinal Mazarin as a
means for the French King Louis XIV to raise revenue.[16]
According to Tonti’s plan, which is the basis for all tontine schemes developed
so far, the French government should issue shares, with 20 million principal,
at the price of 300 livre per share. Investors would choose either their life, or
the life of a third party (nominee) as the life in interest for their stake in the
tontine. Participation would be structured in groups of equal sizes (classes)
according to the age of the nominee, 0-7, 8-14 etc. all the way through the age
of 63. Each beneficiary should receive an annual payment based on the interest
earned from the combined initial capital of the investors in the applicable age
cohort. The interest rate should increase with the age of the nominee: for
example, an interest rate of 5% is assumed for the 8-14 age group and a rate
of 15% for the over 63 age class. If a nominee died, his/her payments will get
redistributed among the surviving investors in his class and then the payments
of the other surviving nominees in that class would increase. The subscriber
represented by the last nominee in each group would get all the interest gen-
erated by the capital within that band. On the death of the last investor, the
capital would revert to the government.
Tonti did not just propose the financial aspect of the plan, he also made guide-
lines for administrative matters and pointed out the high benefits that share-
holders can extract via purchasing a tontine.
The banker’s idea was not without reason, but it was rejected by the French
Parliament because it was considered too risky. There were no reliable calcula-
tions on life expectancy (these were not available until 1746) and, moreover, it
was enough for a person to survive a long time to prolong the payment of the
entire capital to the government by several decades. Tonti’s original proposal
of 1653 was not actually implemented.

Initially rejected by the French, the very first working tontine was established
by the city of Kampen in Holland in 1670. [16] The Kampen Tontine paid a
fixed coupon which every year was split among the surviving members of the
tontine. Upon hearing about its success, many other local Dutch cities offered
tontines to their citizens. Following suit, also France issued the first in 1689
in a series of 14 state tontines to raise money to fund military operations.
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Also the English government organized a state tontine in 1693.
In January 1693, during the fifth year of the reign of King William III and
Queen Mary II, the British Parliament passed the Million Act, designed to
raise one million pounds towards carrying on the war against France.[18] The
Act specified that prior to 1 May 1693 any British native or foreigner could
purchase a tontine share from the Exchequer1 for £100 and thus gain entry
into the first British government-run tontine scheme.
For £100 a contributor (annuitant) could select any nominee of any age –
including the contributor himself – on whose life the tontine would be contin-
gent. Dividend payments would be distributed to the investor as long as the
nominee was still alive. Notice that the entry investment in the tontine pool
far exceeded the annual average industrial wage.2
The British tontine was a simpler structure compared to the original tontine
scheme envisioned by Lorenzo de Tonti, which involved multiple classes - in
order to reduce the transfer of wealth from older to younger participants. In
King William’s tontine, each share entitled the investor to an annual dividend
of 10% for seven years (until June 1700), after which the dividends would
be reduced to 7% per share. The declining structure of interest rates was
introduced to allow dividends received by the survivors to be smoother.

A tontine was also one of the options proposed by the U.S. Treasury Secretary
Alexander Hamilton as a means to reduce the national debt at the beginning
of the American Republic in the year 1790. [16]
In order to reduce a crushing national debt, he suggested the U.S. government
replace high-interest war debt with new bonds in which coupon payments
would be made to a group, as opposed to individuals. The group members
would share the interest payments equally among themselves, provided they
were alive. But, once a member of the group died, his or her portion would stay
in a pool and be shared among the survivors. This process would theoretically
continue until the very last survivor would be entitled to the entire interest
payment - potentially millions of dollars. Hamilton proposed the tontine in a
letter to George Washington, claiming that it would reduce the interest paid
on the US debt, and eventually eliminate it entirely. However the US Congress
decided not to act on Hamilton’s proposal, but the tontine idea itself never
died on American soil.

Although tontines were imperfect substitutes for national taxes, they devel-
oped a secondary purpose in the UK and the US: project financing. [16] The
tontine often took the form of a private subscription, whose profits were used to
finance particular projects. These tontines were usually founded as an instru-
ment for municipal improvement including both public and private buildings.

1The Exchequer was a component of the governments of England, Wales, Scotland and
Northern Ireland which was responsible for the administration and collection of taxes.

2The average annual wage of building laborers in England during the latter part of the
17th century was £16. It is therefore quite plausible that the 1693 tontine was an investment
mainly for rich people.
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From the 18th century tontines were then used to collect private funding for
construction projects on both sides of the Atlantic. In Britain some notable
projects included hotels, the Freemasons’ Lodge in the City of London and
Richmond Bridge across the River Thames in west London. Notable private
projects in the United States included hotels and public buildings, such as the
’Tontine Coffee House’ in Manhattan, which is the first real location for what
eventually became the New York Stock Exchange.

In the middle of the 19th century, US insurance companies also began issuing
tontine insurance policies to the public and they became very popular. In
1876, seeking a means to stand out in the emerging and highly competitive
insurance markets, Henry Hyde, the founder of Equitable Life, introduced the
US public to tontine pensions. By the start of the 20th century, historians
have documented that half of U.S. households owned a tontine insurance pol-
icy, which many used to support themselves through retirement. This was a
personal hedge against longevity, with little risk exposure for the insurance
company. Within 30 years, the tontine business had quickly outgrown the an-
nuities business with over $5.77bn alone of Tontines sold by the four largest
firms.[18] Also France and British insurance companies started issuing tontine
as a form of social and retirement insurance. Just as their popularity grew
rapidly in America, the fall of tontines was equally precipitous. Shortly after
1900, several spectacular misappropriation scandals3 in the insurance industry
led the influential New York State Insurance Commission to ban tontine insur-
ances in the state, and by 1910 most other states followed suit. Tontines have
been illegal in the United States for more than a century, and most insurance
executives likely haven’t heard of them.

Today, a growing number of financial advisers, academics and fintech compa-
nies think it might be time to take a second look at these financial arrange-
ments. Tontines provide the regular income of an annuity - even more income
for living members - and thanks to their relatively low costs, they produce
higher returns than annuities.
They can also offer a solution to longevity risk and a modern version of them
could be a viable way for people to fund their later years.

Today, tontines are regulated in Europe by Directive 2002/83/EC of the Eu-
ropean Parliament. The pan-European pension regulation approved by the
European Commission in 2019 also contains provisions that specifically allow
new generation pension products that comply with the "tontine principle" to
be offered in the 27 EU Member States.
In March 2017, the New York Times [24] reported that tontines were achieving
new consideration as a way for people to obtain a steady retirement income

3Widespread fraud included manipulation of tontine members’ registers, overcharging
fees/costs to tontine pension funds, and conflicts of interest regarding investments made
using members’ capital.
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and there are now only two States in the U.S. (Louisiana and South Carolina)
that specifically prohibit tontines in their statutes.

So far, several new pension architectures have been designed that partially or
fully use the tontine risk-sharing structure, such as:

• The Collective Defined Contribution (CDC) pensions offered in the UK
after the Pension Freedom.

• Tontine Trust:[35] TontineTrust is a fintech company providing retire-
ment benefits on a digital platform, based on the ’Tontine’ principle
where subscribers pool their longevity risk unlike annuities. The com-
pany is preparing to launch several international pension products for
European consumers and to develop a safer, more cost-efficient and trans-
parent marketplace.

• QSuper:[34] an Australian fund which offers lifetime annuities to its
clients, including also tontine policies.

• Le Conservateure.[36] Le Conservateur Mutual Associations were created
in France in 1844 with the ambition of developing and modernising the
tontine system imagined by Lorenzo Tonti during the reign of Louis
XIV. In 1976, Le Conservateur created a mutual insurance company
that enabled it to extend its offer to life insurance contracts. Today Le
Conservateure offers its customers the possibility of purchasing tontine
policies.

Authors such as Piggott, Stamos, Milevsky, Donnelly and Sabin introduced
modern versions of tontines in their works. I will analyse them in detail in the
following sections.
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2.2 Group Self Annuitization
The Group Self Annuitization (GSA) plan, introduced by Piggott et al.(2005)
[26], is an implicit tontine.
The main feature of this type of product is that annuitants bear their system-
atic risk, but they share their idiosyncratic risk. A GSA plan allows retirees to
join together and form a fund that can provide protection against longevity.
Individuals pay a single premium to the insurance company in order to receive
annually, until death, a benefit. This benefit changes and is adjusted according
to the mortality experience of the pool and actual investment returns. Hence
it is an implicit tontine, in which the income is adjusted annually as mortality
and returns evolve.
The authors presented the payment path for different scenarios - from the sim-
plest to the most sophisticated and realistic.
They initially assumed a single cohort with identical mortality characteristics
and a pool in which participants contribute equal amounts to the fund and in
return, receive equal benefit payments. Then they considered the case where
individuals may contribute varying amounts and may therefore receive differ-
ent annuity payouts. They also extended their analysis to include multiple
cohorts joining the pool at arbitrary times.
I will describe in the following subsections all the settings examined by Piggott
et al.(2005) [26] with a focus on how payouts are evaluated in a GSA plan.

Single Cohort with Constant Contributions and Constant
Annuity Payouts
A GSA plan initially operates like an ordinary lifetime annuity purchased in the
private market. Depending on the premium paid by each retiree, the benefit
payout is derived - taking into account expected mortality rates and expected
investment returns. When the expectations are actually realized over time, the
benefit payout determined at the point of entry remains constant. Conversely,
when expectations are not fulfilled, the income should be adjusted taking into
account actual data.

In this section I consider a pool consisting of lx annuitants, all aged x, and
with identical mortality characteristics. All of them decide to receive an annual
benefit set equal to B0. The initial total fund - equal to the sum of all premiums
paid by the retirees - is therefore equal to:

F0 = lx ·B0 · äx

where äx is an actuarial notation interpreted as the single premium paid by
an x-aged for an immediate unitary lifetime annuity and its value is given by

äx =
∞∑
t=0

vt
(
lx+t

lx

)
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Here it is assumed that the realised rates of return on investments are equal to
the expected rates of return. However we consider the case where the actual
survival pattern is different from expected, i.e. the number of individuals in
the fund surviving is different from expected, and thus the initial payout B0
must be adjusted to balance the fund.
The number of actual survivors will be denoted by a ∗ so that, for instance,
l∗x+1 represents the actual number of individuals in the fund surviving at age
x+ 1.4
In order to determine the final formula for future payouts, it is first necessary
to identify the evolution of the fund.
The fund value at time 1 becomes equal to the fund at time 0 minus benefits
paid to survivors, all capitalised at the interest rate R:

F1 = (F0 − lxB0)(1 +R)
= (lxB0 äx − lxB0)(1 +R)
= lxB0(äx − 1)(1 +R)

Spreading this across the remaining survivors during their expected future
lifetime, the periodic benefit payment received at time 1 becomes:

B∗1 = 1
l∗x+1

(
F1

äx+1

)

= 1
l∗x+1

(
lxB0(äx − 1)(1 +R)

äx+1

)

Using the recursive relationship for annuitant factors

äx+1 = (äx − 1)(1 +R)/px (2.1)

where px is the expected annual surviving rate equal to lx+1/lx, we have

B∗1 = 1
l∗x+1

(
lxB0(äx − 1)(1 +R)
(äx − 1)(1 +R)/px

)

= B0

(
lxpx
l∗x+1

)
= B0

(
lxpx
lxp∗x

)
= B0

(
px
p∗x

)

It is clear that the payout at time 1 is an adjusted version of the benefit at time
0. The adjustment factor is based on the ratio of expected to actual survival
rates. Of course, if the realized survival rate p∗x coincides with the expectation
px, the benefit received at time 1 by the individual is exactly equal to B0.
Hence, when expectations are realized the payout is constant and equal to the
benefit paid by a standard annuity. On the other hand, whenever p∗x 6= px,
the benefit must be adjusted. Indeed, if p∗x > px, i.e. survival probability
increases, the ratio px

p∗
x
is lower than 1, resulting in a decrease in benefits. The

4lx is fixed and know since it represents the number of initial annuitants in the pool.
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greater the number of survivors in the pool, the smaller the revenue received.
Viceversa, if actual survival probability decreases, i.e. p∗x < px, the ratio px

p∗
x
is

higher than 1, resulting in an increase in payouts. The smaller the number of
survivors in the pool, the higher the mortality credits received and thus the
greater the income.
Proceeding intuitively we would determine the benefit payment at any given
point in time t.

B∗t = 1
l∗x+t

(
Ft
äx+t

)
= 1
l∗x+t

(
l∗x+t−1 B

∗
t−1(äx+t−1 − 1)(1 +R)

äx+t

)

= 1
l∗x+t

(
l∗x+t−1 B

∗
t−1(äx+t−1 − 1)(1 +R)

(äx+t−1 − 1)(1 +R)/px+t−1

)

= B∗t−1

(
px+t−1

p∗x+t−1

)

Again the benefit paid at time t is an adjusted version of the payout at time
t− 1, where the adjustment factor is based on the ratio between expected and
actual survivorship rates. Of course, also in this case, if expected mortality
rates are realized, the benefit paid at time t is constant and equal to the payout
received at time t− 1. Hence, if p∗x+t−1 = px+t−1, then B∗t = B∗t−1.
Notice that if the expectations are realized for any given point in time t, the
payment path of the GSA plan is exactly the same as a standard annuity, since
it provides a constant benefit equal to B0 throughout time.

We now consider also the case when the investment earning pattern is different
from the assumed constant rate R.
The actual investment earning rates will be denoted by a ∗ so that, for instance,
R∗1 represents the actual interest rate earned in the first year, in (0; 1).
The value of the fund at any time t will be equal to the fund in the previous
period minus benefits paid to survivors, all capitalised at the effective interest
rate R∗t .

Ft = (Ft−1 − l∗x+t−1B
∗
t−1)(1 +R∗t ) = B∗t−1l

∗
x+t−1(äx+t−1 − 1)(1 +R∗t )

Spreading this across the remaining lives during their expected future lifetime,
the periodic benefit payment received at time t becomes:5

B∗t = 1
l∗x+t

(
Ft
äx+t

)
= 1
l∗x+t

(
l∗x+t−1 B

∗
t−1(äx+t−1 − 1)(1 +R∗t )

äx+t

)

= B∗t−1
l∗x+t−1
l∗x+t

(äx+t−1 − 1)(1 +R∗t )
(äx+t−1 − 1)(1 +R)/px+t−1

= B∗t−1

(
px+t−1

p∗x+t−1
· 1 +R∗t

1 +R

)
(2.2)

5Here we assume again that (2.1) holds. The stream of annuity factors äx+t is calculated
taking into account expected survival and interest rates, not actual ones.
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Hence, we observe that the payment for period t depends on the payment for
t − 1 and two adjustment factors: the first one is related to the difference
in expected and realized mortality during the previous period and the second
factor is related to the difference in the expected and realized investment earn-
ings rate for the period. Of course if R = R∗t and p∗x+t−1 = px+t−1, the benefit
received at time t is the same as the one received at time t− 1.
The essential feature in the calculations demonstrated above, is that the pe-
riodic, here assumed annual, benefit payout rates can be determined from
the previous benefit payout rates multiplied by two adjustment factors. The
generic formula is given by

Bt = Bt−1 ·MEAt · IRAt (2.3)

where MEAt is the mortality experience adjustment and IRAt is the interest
rate adjustment for the period from year t− 1 to t.
This is how a GSA plan operates: it recomputes the benefit payouts peri-
odically using the most recent benefit payouts and multiplying them by ad-
justment factors. If, for example, the mortality is lighter than expected, i.e.
p∗x+t−1 > px+t−1, the next period benefit will decrease, i.e. Bt < Bt−1. The fund
would have to be distributed over a larger group of survivors than expected
and so the benefit payment would be lower. Similarly, if the investment earn-
ings of the period are worse than expected, i.e. R∗t < R, there will be lower
benefit payouts, i.e. Bt < Bt−1, since the accumulated fund does not grow
as predicted. Of course, in this scheme, if expectations are always realized,
then the benefit payout is constant throughout time and equal to the one of a
standard lifetime annuity, i.e. Bt = B0 ∀i.

Another interesting way to explain the benefits of a GSA plan is to recognize
mortality credits. In fact, GSA payments, in addition to being adjusted ver-
sions of previously received payouts, can also be viewed as a portion of the
personal fund plus additional benefits received by dead people.
We define by Fi,t the fund owned by each individual i at time t. Notice that:

Ft =
∑
∀i
Fi,t where Fi,t = F (t) ∀i each member contribute equal amount

We define the following sets:

At = {i ∈ {1, ..., lx} : i-th individual is alive at time t}

Dt−1 = {i ∈ {1, ..., lx} : i-th individual dies between t− 1 and t}

Now, the total fund of the plan at time t can be decomposed into the funds
of those who are still alive at time t, denoted by the set At, and the funds of
those who died between t− 1 and t, denoted by the set Dt−1.

Ft =
∑
At

Fi,t +
∑
Dt−1

Fi,t
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The benefit of GSA plan can thus be viewed as:

Bt = Ft
äx+t

· 1
l∗x+t

=

∑
At

Fi,t + ∑
Dt−1

Fi,t

äx+tl∗x+t

= l∗x+tF (t)
l∗x+täx+t

+

(
l∗x+t−1 − l∗x+t

)
F (t)

l∗x+täx+t

= F (t)
äx+t

+

(
l∗x+t−1 − l∗x+t

)
F (t)

l∗x+täx+t
(2.4)

It is clear that the value of the benefit received at time t is equal to a portion of
the personal fund F (t) owned at time t plus a mortality credit. The mortality
credit is derived from an equitable redistribution of available funds from those
who died during the period.(
l∗x+t−1 − l∗x+t

)
represents the number of people died between t− 1 and t: the

funds owned by those people are redistributed among those who are still alive
at time t, i.e. l∗x+t. This is precisely what is meant by mortality credits:
reallocation of funds among survivors.
Through this representation we are able to recognize the tontine mechanism
within the GSA plan: funds from dead people are redistributed equally among
those who are still alive, in the form of mortality credits.
We can check that if we assume F (t) = Ft

l∗x+t−1
, this ’new’ representation of

benefits coincides with the original one.

B∗t = F (t)
äx+t

+ l∗x+t−1F (t)
l∗x+täx+t

−
l∗x+tF (t)
äx+tl∗x+t

= l∗x+t−1 F (t)
l∗x+t äx+t

= l∗x+t−1 Ft
l∗x+t−1 l

∗
x+t äx+t

which corresponds exactly to
Ft
äx+t

· 1
l∗x+t

The idea is that the total fund value at each time t is equally split among those
who are still alive, providing them with an individual fund of F (t).

To summarize, the benefit payout of a GSA plan, when we assume homoge-
neous investors and constant contribution, can be seen as:

• Adjusted version of previous benefit payout as stated in (2.2);

• Portion of individual fund plus mortality credit as stated in (2.4).

In the following section I will present more complicated and realistic situations
in order to extend the formulas presented so far. We will see that, even in the
case of variable contributions, the insights presented up to now are valid.
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Single Cohort with Varying Contributions and Varying
Annuity Payouts
The previous section developed calculation of the benefit payout rates assuming
that participants contribute equal amounts to the fund and in return, receive
equal annual benefit payouts. We consider now the case where varying amounts
of contributions and different annuity incomes are allowed for all participants.
Here it is assumed that at time 0 there are lx individuals, all aged x, joining
the group. Each ith annuitant pays the single premium Fi,0 at time 0, which
is contributed to the total fund. The total fund at the beginning of the period
would be therefore equal to the sum of all the single contributions made by all
retirees.

F0 =
lx∑
i=1

Fi,0

The total benefit payment for the entire group is then given by

B0 = F0

äx
=

lx∑
i=1

Bi,0

where Bi,0 represents the initial annual benefit payment for the ith annuitant
and is given by:

Bi,0 = Fi,0
äx

= F0

äx

Fi,0
F0

= B0

(
Fi,0
F0

)
It is clear that each income Bi,0 is equal to a portion of the total benefit payout
B0: the proportion of benefit due to the ith individual is closely related to the
percentage of fund held by the ith annuitant. The higher is the percentage of
total fund owned by the ith annuitant, the higher would be the benefit received.

After one period, at time t = 1, the entire group’s fund value becomes equal to
the initial total fund minus the total benefit payment maid to the lx individuals,
all capitalised at the actual interest rate R∗1.

F1 = (F0 −B0)(1 +R∗1)

The next annuity payout for the entire group is therefore given by:

B∗1 = F1

äx+1

Let us denote by Fi,1 the fund owned by the ith individual at time 1 and let
us define the following sets:

A1 = {i ∈ {1, ..., lx} : i-th individual is alive at time 1}

D0 = {i ∈ {1, ..., lx} : i-th individual dies between 0 and 1}
Knowing that the single annuity payout for an individual who is still alive at
the end of the period is determined as a portion of the total annuity payout
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B∗1 , taking into account the proportion of the fund owned by the annuitant,
we can compute:

B∗i,1 = B∗1

 Fi,1∑
A1
Fi,1


We can also check that the sum of all the single payouts received by the entire
pool, in particular by those who are still alive at time 1, is exactly equal to
the total payout of the fund. Indeed:

∑
i∈A1

B∗i,1 =
∑
i∈A1

B∗1

 Fi,1∑
A1
Fi,1

 = B∗1

∑
i∈A1

Fi,1∑
i∈A1

Fi,1

 = B∗1

According to the insights developed in the previous section, we expect, even in
the case of variable contributions, that the benefit received at time 1, is equal
to a portion of the individual fund at time 1 plus mortality credits derived
from people who died between 0 and 1.
Recall that the total fund value at time 1, can be decomposed into the sum of
all the individual retirees’ funds, both for those who are still alive , represented
by the cohort A1, and for those who died between [0, 1), denoted by D0.

F1 =
∑
A1

Fi,1 +
∑
D0

Fi,1

As a matter of fact, we can derive the value of the benefit received at time 1
by the ith annuitant as:

B∗i,1 = B∗1

 Fi,1∑
A1
Fi,1

 = F1

äx+1

 Fi,1∑
A1
Fi,1

 =

∑
A1
Fi,1 + ∑

D0
Fi,t

äx+1

 Fi,1∑
A1
Fi,1



=
Fi,1 +

(∑
D0
Fi,1/

∑
A1
Fi,1

)
Fi,1

äx+1
= Fi,1
äx+1

+

Fi,1∑
A1

Fi,1

∑
D0
Fi,1

äx+1

The total benefit received at time 1 by each individual can thus be decomposed
into two parts. The first one is derived from the personal fund owned by each
participant at time 1. The second one is an additional benefit amount made to
the annuitant, derived from a redistribution of the funds available from those
who died between 0 and 1. One can think of this as a form of inheritance
derived from those who died in the group. We can now extend the formulas
inductively to time t, such that the annuity payout rate for an individual who
survive at time t can be determined as follow:

B∗i,t = Fi,t
äx+t

+

Fi,t∑
At

Fi,t

∑
Dt−1

Fi,t

äx+t
(2.5)

∑
Dt−1

Fi,t represents funds of dead people that must be reallocated among those

who are still alive. Also in this case the distribution of mortality credits is
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proportional to the percentage of fund owned by each individual. The higher
is the percentage of fund owned, the higher is the amount of mortality credit
received. We can also see that when a person with a very large fund dies, all
other participants in the pool will benefit a lot, since a great amount of money
is redistributed. On the other hand, if some poor member dies, someone with
a very small fund, all the other participants in the pool will not increase a lot
their benefit payouts.
Further, in order to get a better idea of the dynamics of individual funds Fi,t,
let us define by F̂i,t as the numerator of (2.5). We can recognize that

F̂i,t =
B∗i,t
ax+t

The evolution of individual funds depends on F̂i,t. Indeed:

Fi,t = (F̂i,t−1 −B∗i,t−1)(1 +R∗t )

Each single fund at time t is equal to the fund F̂i,t−1 in the previous period,
minus benefit paid to the retiree, all capitalized at the actual interest rate R.
One interesting feature is that each single fund evolves by taking into account
both benefits paid and mortality credits received. Therefore, on one hand,
the benefits paid are subtracted, but on the other hand mortality credits are
added.
Having in mind how individual funds evolve over time, let us explain the
benefits of the GSA plan as an adjusted version of previous payments received,
even in the case of varying contributions amount. We attempt to derive, also
in this case, benefit payments at time t by recognizing two adjustment factors.
As a matter of fact:

B∗i,t = Ft
äx+t

 Fi,t∑
At

Fi,t

 = Ft∑
At

Fi,t

(F̂i,t−1 −Bi,t−1)(1 +R∗t )
(äx+t−1 − 1)(1 +R)/px+t−1

= Ft∑
At

Fi,t

B∗i,t−1(äx+t−1 − 1)(1 +R∗1)
(äx+t−1 − 1)(1 +R)/px+t−1

= B∗i,t−1 ·
px+t−1(∑

At

Fi,t

)
/Ft

·
(

(1 +R∗t )
(1 +R)

)
(2.6)

Again, the next year’s payout rate is calculated by adjusting the previous
year’s benefit payout rate by two factors: one due to mortality experience
and another due to interest rates. Of course, if R∗t > R, the benefit received
increases, B∗i,t > Bi,t−1: the higher investments returns, the higher payout
rates. On the other hand, the higher the number of people surviving in the
pool, i.e. ∑

i∈At
Fi,t is high, the smaller benefit received.
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We can notice that the mortality adjustment derived in the previous section,
when all participant contribute equal amounts, is a special case of this. Let us
examine the issue:

MEAt = px+t−1(∑
At

Fi,t/Ft

) [if Fi,t = Fi ∀i]= px+t−1(
Fil∗x+t
Ft

) = px+t−1(
Ftl∗x+t
l∗x+t−1Ft

) = px+t−1

p∗x+t−1

The benefit payout fits the formula (2.3) stated in the previous section:

B∗j,t = B∗j,t−1 ·MEAt · IRAt (2.7)

The benefit payout is, once again, a twice-adjusted version of the previous
year’s income. The first adjustment is the mortality experience adjustment
given by the ratio of expected survival rate to (∑

At

Fi,t/Ft) . The second adjust-
ment is instead the interest rate adjustment calculated as the ratio of realized
to expected investment earnings rate for the period.

Multiple Cohorts
The most effective way to exploit the pooling effect in a GSA plan is to intro-
duce multiple cohorts. Such a scheme allows people to join the fund, regardless
of their age and irrespective of the point in time. It is a plan able to integrate
new entrants with existing members of the pool. The authors listed four cri-
teria that must be met within a GSA plan.

• If all groups experience the expected mortality, payouts should not alter
for any group;

• If groups’ expected and actual mortality differ, payments should all vary
in the same proportion;

• Departures of realized from expected mortality should result in a once-
for-all adjustment in all future payments;

• Period by period balance should be preserved.

When we introduce multiple cohorts there are many temporal and age dimen-
sions involved: let’s have a look at the notation.
First there is the age at which an individual enters the pool, denoted by [x].
Second we have the current period, indicated with time t.
Lastly we have the length of time that has elapsed since joining the plan, de-
noted by k. When k = t it means that we are dealing with cohorts who joined
the pool at plan inception. When k 6= t it means that we are dealing with
cohorts who joined the pool after the plan inception and k represents the time
spent in the fund by individuals.
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The fund value at time t, of the ith annuitant, belonging to the cohort who
entered at age [x], k periods ago is denoted by k

[x]Fi,t and computed as:

k
[x]Fi,t = ( k−1

[x] F̂i,t−1 − k−1
[x] B

∗
i,t−1)(1 +R∗t )

As before, the fund realised at time t corresponds to the fund F̂ at time t− 1
minus the benefits paid, capitalised at the current interest rate.
The total fund of the plan Ft is then given by the sum of all single funds,
aggregated over all ages, over all durations of funds and over all individuals
who are still alive at time t.6

Ft =
∑
k

∑
x

∑
At

k
[x]F̂i,t

The payout rate at time t, for the ith annuitant, belonging to the cohort who
entered at age [x], k periods ago is denoted by k

[x]B
∗
i,t and computed as:

k
[x]B

∗
i,t =

k
[x]F̂i,t

ä[x]+k

By combining the formulas stated above we can rewrite the total fund value
at time t as:

Ft =
∑
k≥1

∑
x

∑
At

k
[x]B

∗
i,tä[x]+k

This equation balances the fund and the actuarial present value of future
payments. Following the logic of the GSA plan, with k

[x]B
∗
i,t = k

[x]B
∗
i,t−1 ·MEAt ·

IRAt, we get:

Ft = MEAt ·
(1 +R∗t

1 +R

)∑
k≥1

∑
x

∑
At

k
[x]B

∗
i,t−1(ä[x]+k−1 − 1)(1 +R)

p[x]+k−1

= MEAt ·
∑
k≥1

∑
x

∑
At

( k
[x]B

∗
i,t−1ä[x]+k−1 − k

[x]B
∗
i,t−1) 1 +R∗t

p[x]+k−1

Notice that

( k
[x]B

∗
i,t−1ä[x]+k−1 − k

[x]B
∗
i,t−1)(1 +R∗t ) = ( k

[x]F̂i,t−1 − k
[x]B

∗
i,t−1)(1 +R∗t ) = k

[x]Fi,t

Thus the total fund value becomes:

Ft = MEAt ·
∑
k≥1

∑
x

∑
At

k
[x]Fi,t

p[x]+k−1

The mortality adjustment factor results thus to be equal to:

MEAt = Ft∑
k≥1

∑
x

∑
At

k
[x]Fi,t

p[x]+k−1

(2.8)

6The summation is done considering only those who entered the pool before time t, not
for those who enter at t. We consider only those exposed to risk in the previous period, but
not new entrants.
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It can be proved, after a little bit of calculation and transformation, that the
mortality adjustment factor under a multiple cohort scheme, is a weighted har-
monic mean of the mortality adjustment factor under a single cohort scheme.
We can also recognize that the mortality adjustment factor of the single cohort
case is a special case of this adjustment. When we are dealing with homoge-
neous cohorts there is only one age x and only one time of entry t−k. Equation
(2.2) is therefore simplified and turns out to be in line with equation (2.6).

Once the mortality adjustment factor has been calculated, once and for all
future payments, as required by the four initial criteria, we can state the
general formula for calculating the payment rate at time t for the ith annuitant,
belonging to the cohort who entered at age [x], k periods ago. Again, the
benefit payout fits the formula (2.3) and (2.7) stated in the previous sections:

k
[x]B

∗
i,t = k

[x]B
∗
i,t−1 ·

 Ft∑
k≥1

∑
x

∑
At

k
[x]Fi,t

p[x]+k−1

 ·
(1 +R∗t

1 +R

)
(2.9)

The periodic benefit payment in a group self annuitization plan is always deter-
mined based on the previous payment, adjusted for any deviations in mortality
and interest rates from expectations. Once again, if the earning rate of return
is higher than expected, i.e. R∗t > R, the payout rate increases.
Such a tontine is able to determine a payout level a priori, on the basis of
mortality and earnings expectations. Then, in the event that expectations are
not met, the GSA plan adjusts benefits. This income adjustments are made
periodically whenever deviations from expectations occur.

Examples
In this section we will show the difference between a GSA plan with a single
cohort and a GSA plan with multiple cohorts. We consider an example in
which expected mortality rates are taken from the United States RP-2000
Male Healthy Annuitant, and expected interest rates are fixed to 4%. We
assume a 50% deviation in mortality rates occurred in only one period, at
time t = 15, and no deviations in earning rates.

For the single cohort case, we consider an individual belonging to the age-60
cohort joining the plan at inception, and an initial benefit payout established
at $300 for all per period, i.e. we are dealing with an homogeneous cohort
in which all participants contribute equal amounts. A deviation in mortality
rate at period 15 requires a benefit adjustment from the initial value at time
16. In particular, if we assume a 50% drop in mortality, the benefit payment
is reduced by about 2 percentage points to $294. As expected, whenever the
actual survival rates increase, thus mortality rates drop, the level of the payouts
decreases. The idea is that when the actual number of participant in the GSA
is higher than expected, the benefits paid to survivors must be adjusted so
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that they decrease. The fund is not able to guarantee high benefits to a larger
pool of people than expected.
In the case of multiple cohorts, other cohorts of different ages are allowed
to enter the pool at a later date. Deviation in mortality, for the purpose of
simplifying the illustration, is assumed only for the 60-age cohort: new entrants
do not encounter any deviation from expected mortality. Also in this case, a
deviation in mortality rate at period 15 requires a benefit adjustment from the
initial value at time 16. Now, if we assume again a 50% drop in mortality, the
benefit payment is reduced only by about 0.5 percentage points to $298,7.

In figure 2.1 is shown the effect of pooling longevity over several age cohorts
when a deviation in mortality occurs in a single period. When we pool all
cohorts together, the effect of drop in mortality in benefit payouts is less dra-
matic. Whenever the fund is open to multiple cohorts, allowing individuals to
share idiosyncratic risks, any variation in benefits may be reduced. By sharing
the risk, people are able to reduce the adjustments to their payout resulting
from mortality and interest rate experience.

Figure 2.1: Benefit payments GSA plan

Source: Piggott et. al (2005)[26]

I will come back to the group self annuitization plan in chapter 3, dedicated to
simulations. Thus, I will simulate the evolution of benefits, mortality credits
and mortality adjustments and I will analyze the dynamic of funds. For the
sake of simplicity, I will perform simulation only for the homogeneous cohort
case, but I will consider both the constant contribution and varying contribu-
tion case.
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2.3 Optimal Retirement Tontine
Another implicit tontine structure has been proposed by Milevsky and Salis-
bury (2016). [20]
By examining the original tontines proposed in history, the authors decided to
suggest a different type of scheme in which payment rates were not constant
over time. As seen in the case of historical tontines, if a constant payment rate
is assumed, the dividends received by the survivors turn out to be increasing
over time: as the number of survivors decreases more than exponentially over
time. Such a payout path, where the last survivor receives hundreds of mul-
tiples of his or her initial investment, is at odds with the economic desires of
pensioners. Indeed, many studies have shown that older retirees prefer stable
or decreasing consumption across years, rather than increasing cash flows as
proposed by historical tontines. For this reason, Milevsky and Salisbury pro-
posed a different tontine, designed to better meet the needs of pensioners. By
maximizing the expected utility of consumption over a lifetime, they were able
to find the optimal tontine structure, in other words, to calculate the optimal
payment rate d(t) that is expected not to remain constant over time. As in
most literature articles, the authors first examined a simpler case and then
moved into a more complicated scenario. They initially considered the case of
a single homogeneous cohort, in which all pool participants have the same age
and mortality characteristics. In this setting they defined the natural tontine
as the function for which the payout declines in exact proportion to the survival
probabilities, proving that this is optimal under logarithmic utility function.
Thereafter, they extended their analysis to multiple inhomogeneous cohorts.
Here they were looking for optimal participation rates, optimal pricing shares
and optimal payout paths that would make the scheme equitable. They de-
fined the proportional tontine and provided conditions for the existence of such
a product.
In the following sections I will review in great details all the arguments pre-
sented in this study.

Single Homogeneous Cohort
In this section I will analyze the tontine scheme proposed by Milevsky and
Salisbury when a single homogeneous cohort is assumed.
The proposed tontine is expected to cost a dollar and continuously pay a pay-
out function of d(t) , instead of annually or monthly. The authors also assumed
a constant7 risk free interest rate r and an objective survival function tpx which
applies to all individuals aged x.
Given that the basic comparator for a tontine is an annuity in which policy-
holders initially pay one dollar to the insurer and receive in return a lifetime
income stream of c(t), I will now examine the expected utility of a rational

7All contributed funds are invested at time 0 in a static bond portfolio, whose interest
rate is equal to r.
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annuitant in order to compare it with the plan proposed by Milevsky and Salis-
bury. Letting u(c) denote the instantaneous utility of consumption, a rational
annuitant, having no bequest motive, will choose a life annuity payout function
c(t) that maximizes the expected discounted lifetime utility function:

max
c(t)

E
[∫ ∞

0
e−rtu(c(t))dt

]
= max

c(t)

[∫ ∞
0

e−rt tpxu(c(t))dt
]

This maximization problem is moreover subject to a constraint. The constraint
on these annuities is that they are fairly priced, meaning that the initial pay-
ments invested at the risk free rate are able to fund the benefit payouts in
perpetuity: ∫ ∞

0
e−rt tpxc(t)dt = 1

By the Euler-Lagrangian theorem, it is possible to solve the constrained max-
imization problem, and come up with the following result:

∃λ | e−rt tpxu′(c(t)) = λe−rt tpx ∀t

Simplifying the equation on both sides we get:

u′(c(t)) = λ

Provided that the utility function is strictly concave, the optimal annuity pay-
out function c(t) must be constant. The stable level of income can be easily
determined through the budget constraint as:

c(t) = c0 =
[∫ ∞

0
e−rt tpxdt

]−1
(2.10)

Let us now examine the tontine structure proposed by the authors. As men-
tioned above the main purpose of the authors is to determine the optimal level
of payout d(t) that can maximize the expected utility. The main point of the
paper is that there is no reason for the tontine payout function to be a fixed
percentage of the initial dollar invested, as it was historically.
Suppose there are initially n subscribers to the tontine plan at time 0, each de-
positing a dollar with the tontine sponsor. Let N(t) be the random number of
live subscribers at time t. If we consider one of these subscribers, and assume
that this individual is alive, we can define N(t) − 1 as the number of other
live subscribers. The variable N(t)−1 is assumed to be binomially distributed
with probability of success equal to the survival rate tpx.
As with the lifetime annuity, here again the individual will choose the ton-
tine optimal payout function d(t) that maximizes the individual’s discounted
utility:

max
d(t)

E
[∫ ∞

0
e−rtu

(
nd(t)
N(t)

)
dt

]
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Let us note that nd(t) represents the total fund payment at time t, which must
be divided among those who are still alive, i.e. N(t). As the expected value
function is solved, the maximization problem becomes as follows:

max
d(t)

∫ ∞
0

e−rt tpxE
[
u

(
nd(t)
N(t)

)
dt

]
=

max
d(t)

∫ ∞
0

e−rt tpx
n−1∑
k=0

(
n− 1
k

)
tp
k
x(1− tpx)n−1−ku

(
nd(t)
k + 1

)
dt

Also this maximization problem is subject to a constraint. The constraint on
the tontine payout function is that the sponsor of the tontine can not sustain
a loss, meaning that the initial deposit of n should be sufficient to sustain
withdrawals in perpetuity. The sponsor is not subject to longevity risk; it is
the pool that bears the risk entirely. The budget constraint is therefore:∫ ∞

0
e−rtd(t)dt = 1

By the Euler-Lagrangian theorem, it is possible to solve the constrained max-
imization problem, and come up with the following result:

∃λ | e−rt tpx
n−1∑
k=0

(
n− 1
k

)
tp
k
x(1− tpx)n−1−k n

k + 1u
′
(
nd(t)
k + 1

)
= λe−rt ∀t

It is possible but challenging to solve this equation when a generic utility
function is considered. But if a Constant Relative Risk Aversion (CRRA)
utility is assumed the solution is greatly simplified. Indeed with a CRRA utility
function, the optimal tontine withdrawal rate is a function of the longevity risk
aversion coefficient γ, of the number of initial subscribers n and of the survival
probability tpx:

d(t) = Dn,γ( tpx) = Dn,γ(1)βn,γ( tpx)1/γ (2.11)

where:

βn,γ( tpx) = tpx
n−1∑
k=0

(
n− 1
k

)
tp
k
x(1− tpx)n−1−k

(
n

k + 1

)1−γ

Dn,γ(1) =
[∫ ∞

0
e−rtβn,γ( tpx)1/γdt

]−1

This optimal payout function results now to be decreasing with t. Given that
the actual periodic amount received by each individual is given by nd(t)/N(t),
and considering that the number of survivors N(t) decreases over time, the
optimal tontine pays survivors a cash value that should remain relatively con-
stant over the retirement years.

We consider now a special case: we fix the longevity risk aversion coefficient
γ = 1, assuming then a logarithmic utility function.
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When this utility function is taken into account the optimal withdrawal func-
tion is greatly simplified. Under this assumption indeed d(t) is simply a rate
that decreases in exact proportion to the survival probabilities. The authors
called this special type of tontine Natural Tontine and defined its payout with
DN( tpx).

DN( tpx) = tpx · c0 = tpx ·
[∫ ∞

0
e−rt tpxdt

]−1
(2.12)

Milevsky and Salisbury also proved an important result: the Natural Tontine
is quite optimal for all given risk aversion coefficients γ when n is sufficiently
large. They showed that when an individual with γ 6= 1 is faced with a ton-
tine structure which is only optimal for someone with γ = 1, the welfare loss
they experience is minuscule. For this reason the authors advocate the Natural
Tontine as the basis for the 21st-century tontines: rather than expecting insur-
ance companies to offer a range of products for all the longevity risk aversion
coefficients γ, they proposed this scheme capable of being quite optimal for all
longevity risk aversion coefficients and precisely optimal when considering a
logarithmic utility function.

In the following graph we report the range of possible outcomes from the
optimal natural tontine. Figure 2.2 is computed by solving for the value of c0
and constructing DN( tpx) for n = 400, r = 4% and γ = 1. Once the payout
function DN( tpx) is known for all t, the optimal cash value effectively paid to
survivals, i.e [n ·DN( tpx)/N(t)], is computed. The number of survivals N(t)
at the 10th and 90th percentile of the binomial distribution is used to bracket
the range of benefits from age 65 to age 100. Clearly the expected income per
survivor is relatively constant over the retirement years. This structure results
to be optimal when γ = 1, but also nearly optimal for all the other levels of
longevity risk aversion.

Figure 2.2: Range of natural tontine payout

Note: Interest rate r=4%, n = 400, Gompertz law of Mortality assumed with parameters
m= 88.721 and b=10.
Source: Milevsky and Salisbury (2015)[19]
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Combining Heterogeneous Cohorts
Milevsky and Salisbury extended also their analysis by combining heteroge-
neous cohorts into one pool.
The idea of the authors was as follows: allowing cohorts of different ages (and
mortality) to mix in the same pool, by assigning different participation rates
or shares, based on their age at the time of purchase. If anyone, regardless of
the age, is allowed to participate equally in the same annuity pool, there would
be an immediate transfer of wealth from the members who are expected to die
sooner (older) to those who are expected to live longest (younger). In fact,
the tontine proposed by the authors tries not to discriminate against anyone:
depending on the age of the subscriber at inception, the price of shares is de-
termined. Individuals decide on their investment, then depending on their age,
the price of shares is determined and thus also the number of shares received.
For example, a 55 year-old allocating $10,000 to the tontine should pay $200
per share, and therefore he should receive 50 shares; while a 75 year-old allo-
cating $8,000 to the tontine should pay only $40 per share and then receive as
many as 200 shares. Heterogeneous individuals, paying different amount per
share, would all be mixed together into the same pool. However each tontine
share would provide equal income rights.
Milevsky and Salisbury focused the analysis of this tontine on the concept of
equitable, which is different from the concept of fair. In a fair tontine the
expected present value of benefit paid to retirees should always be equal to
the amount contributed to or invested in the tontine. The authors have shown
that such a scheme, in which there is a chance for everyone to die before the
maximum age, and thus leave inheritance to the pool, can never be made fair
unless it incorporates some form of payment to estates. They have found that
there is always a positive probability of leaving money in the pool when some-
one dies, making it impossible to create a fair tontine. So they decided to focus
on another type of concept, equitability: in a equitable tontine the expected
present value of benefit paid to retirees should always be the same for all par-
ticipants in the scheme regardless of the age. The authors once again, decided
to focus their attention on a scheme that does not discriminate against any
cohort. Hence, they aimed to come up with the optimal tontine scheme, to
determine the proper share prices to charge participants, so that the plan is
equitable and does not discriminate against any age of the group. The tontine
proposed is moreover a closed pool that does not allow anyone to enter (or
obviously exit) after the initial set-up. The mathematical questions they an-
swered are: does a collection of share prices that makes the tontine equitable
exist? Are such prices unique? I will present in detail the results achieved by
the authors.

Let’s introduce some of the notations used:

• n is the number of subscribers at inception;

• K is the number of homogeneous cohorts into which individuals can be
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grouped (those with the same age and contribution level).

For i = 1, ..., K we denote by:

• xi the starting age of individuals in the ith cohort;

• wi the dollars invested by subscribers in the ith cohort;

• ni the number of individuals in the ith cohort, such that n = ∑
ni;

• 1/πi the ith subscriber’s price for share;

• ui the number of shares purchased by each individual in the ith cohort.
It is straightforward to realize that:

wi = ui ·
1
πi
→ ui = wiπi

• Ni(t) the number of survivors at time t in the ith cohort. As for the
single cohort analysis, also here the variable Ni(t)−1 ∼ Bin(ni−1, tpxi)

• w the total initial investment, given by the sum of all the single contri-
butions: w = ∑

niwi;

• d(t) the rate of return for initial dollar invested. Hence wd(t) is the
total time t payout of the tontine. This total payout must be divided
among those who are still alive, and each surviving investor will receive
payments at a rate proportional to the amount of shares owned as can
be clearly seen in the following formula:

wd(t) · ui∑
ujNj(t)

= wd(t) · πiwi∑
πjwjNj(t)

The goal of Milevsky and Salisbury was to find a set of equitable shares prices,
thus to define a collection {π1, ..., πK}. The expected present value of future
benefit for an individual in the ith cohort can be written as:

E
[∫ ∞

0
e−rt

(
wd(t) · πiwi∑

πjwjNj(t)

)
dt

]
=
∫ ∞

0
e−rt tpxwd(t)·E

[
πiwi∑

πjwjNj(t)

]
=

wi ·
∫ ∞

0
e−rt tpxwd(t) · E

[
πi∑

πjwjNj(t)

]
= wi · Fi(πi)

We can see that the present vaue of future benefit is equal to a percentage
Fi(πi) of the initial investment wi. In order to make a tontine equitable we
require the percentage earned on the initial investment by each cohort to be
equal for all. Ideally we require

Fi(πi) = Fj(πj) ∀i 6= j

The authors were able to derive the necessary and sufficient conditions for the
existence of a set of equitable share prices when a tontine structure d(t) has
already been fixed. Here the main theorem presented:
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Theorem. Fix d(t) as well as ni, xi and wi ∀ i = 1, ..., K.

1. If there exists an equitable choice of π = (π1, ...,πK) such that 0<π<∞
for each i, then this choice is unique up to an arbitrary multiplicative
constant.

2. A necessary and sufficient condition for such a π to exist is the following∫ ∞
0

e−rtd(t)(
∏
i 6∈A

tqnixi )(1−
∏
i∈A

tqnixi )dt < αA(1− ε)

where
A ∈ {1, ..., K}

αA = 1
w

∑
k∈A

nkwk

ε =
∫ ∞

0
e−rtd(t)P

∑
j

Nj(t)
 dt

This theorem is very relevant, but it is capable of providing the necessary and
sufficient conditions for the existence of a set of equitable prices, only when
the tontine scheme has already been defined. However the equitable prices
that meet the necessary and sufficient condition may not be optimal for all
cohorts. The natural question is whether it is possible to design a tontine to
be optimal for multiple age cohorts. The authors tried therefore to find a set
of equitable shares prices {π1, ..., πK} and optimal rates of return d(t) that can
maximize the discounted expected utility of individuals. The maximization
problem consists in finding the optimal d(t) and π simultaneously, such that
the tontine plan is optimal for all cohorts.

max
d(t),{π1,...,πK}

∫ ∞
0

e−rt tpxiE
[
U

(
wd(t) · πiwi∑

πjwjNj(t)

)]
dt

This maximization problem is subject to two constraints.
The budget constraint: ∫ ∞

0
e−rtd(t)dt = 1

And the equitable constraint. Recall that the authors wish to establish a
tontine scheme that does not discriminate against anyone. The percentage
earned on the initial investment must therefore be the same for all cohorts and
thus for all subscribers.∫ ∞

0
e−rt tpxi·wd(t)E

[
πi∑

πjwjNj(t)

]
dt =

∫ ∞
0

e−rt tpxm·wd(t)E
[

πm∑
πjwjNj(t)

]
dt ∀i 6= m

This optimization problem turns out not to be possible to solve, except when
n→∞. Hence, the authors were able to define the tontine that asymptotically
optimizes the utility of each cohort simultaneously, calling it the Proportional
tontine. The Proportional tontine has the following characteristics:
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•
πi =

[∫ ∞
0

e−rt tpxidt
]−1

(2.13)

•
d(t) =

∑
j∈K

njwj
w
· tpxj · πj (2.14)

We can recognize that in the homogeneous cohort case, when K = 1, the
Proportional tontine agrees with the Natural tontine defined in the single co-
hort analysis. Again the tontine scheme d(t) is proportional to the survival
rate tpxj . Moreover we can also notice that the payout rate per surviving
individual from the ith cohort at time t remains constant over time:

d(t)w · wiπi∑
j∈K

wiπiNj(t)
=
∑
j∈K

njwj
w

tpxjπi · w ·
wiπi∑

j∈K
wjπjnj tpxj

= πiwi

If the i-th cohort invests a dollar at the inception of the tontine (i.e. wi = 1) ,
the payment rate will remain constant over time (i.e. πi) and it will correspond
to the payment rate of a standard fixed lifetime annuity. Recall that the stable
level income provided by an annuity for initial dollar invested is:

c0 =
[∫ ∞

0
e−rt tpxdt

]−1

This particular design of tontine matches (in the limits, when n → ∞) the
payment structure and cost of a standard annuity for each subscriber. The
proportional tontine can thus be compared to such policies and proposed as a
plausible alternative when the number of subscribers is really huge.

2.4 Fair Tontine Annuity
The Fair Tontine Annuity(FTA), introduced by Sabin(2010)[27] is an explicit
tontine, in which members receive an explicit longevity credit into their per-
sonal account when an individual in the pool dies.
The FTA is an arrangement that provides lifetime payments whose expected
present value matches that of a fair annuity. The main purpose of the author
is to demonstrate that his FTA is favourable compared to the unfair annu-
ities actually offered by insurance companies. We know that in general the
annuities proposed by insurers are not fair: companies sell annuities to make
money, so they typically charge premiums higher than they effectively need
to. Actual annuities than can be purchased from an insurer, typically cost
therefore more than a fair annuity. On the other hand, the cost of an FTA,
because of the manner in which it was designed, can be compared to that of
a fair annuity. Hence, it is evident that an FTA is an attractive alternative to
conventional annuities: it is more cost effective and it can be offered by many
providers, not just insurance companies.
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Moreover, the FTA of Sabin is based on a fair tontine. The author indeed
attempted to solve the problem of unfair tontines, by relying on a different
type of scheme in which members in the pool can be of any age and gender,
and new members can join at any time. The fair tontine allows each member
to contribute any desired amount, but the distribution of asset to surviving
members is not made in equal amount (unlike traditional tontines). Instead of
providing equal portion to each individual in the pool, making the tontine un-
fair and advantaging someone over others (the younger over the older), in a Fair
Tontine the distribution to surviving members is made in unequal proportion,
according to a plan, called Fair Transfer Plan, that provides each member with
a fair bet. The distribution of dividends is proportioned in such a way that
it appropriately compensates each member according to his or her probability
of dying and his or her amount of risk. Payouts in a fair tontine, just as in
a traditional tontine, occur at random times, whenever a group member dies.
Even the amounts of payments are random, as they depend on the balance
account of the person who died and the proportions to which each member is
entitled. The FTA is formed by adding few enhancements, which I will better
analyze later, to the fair tontine, so that it can mimic a fair annuity.

I will present in the following sections the analysis made by Sabin. First, I
will present the Fair Transfer Plan proposed by the author and the necessary
and sufficient conditions for the existence of such a plan. After that I will
analyze a fair tontine, in which payments to survivors are made in accordance
with the Fair Transfer Plan. Finally, I will present the Fair Tontine Annuity,
a rearrangement of a fair tontine in which payments are made to match those
of a fair annuity.

Fair Transfer Plan
In a tontine, when a member dies, his account balance is distributed to sur-
viving members of the pool. Traditionally, the distribution was made in equal
portions to each survivor, or possibly in proportion to surviving members’ bal-
ances. In general, this results in an unfair situation - for example, it favors
younger members who are likely to live longer. In the fair tontine proposed
by Sabin, surviving members do not get equal portions of a dying member’s
balance. Instead, the distribution is made in unequal portions, carefully cho-
sen to make it a fair bet for all members. The distribution is governed by a
Fair Transfer Plan (FTP) that takes into account each member’s probability of
dying and each member’s account balance. In this section I describe in detail
the procedures for deriving such a plane and the conditions of its existence.
Let’s introduce some of the notations used:

• n is the number of members in the pool;

• ε1, ..., εn are the random time of death of members i = 1, ..., n ;

• τ is the time of the next member death: τ = min (ε1, ..., εn);
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• pj is the probability that the dying member is j.
Assuming that t is the observed value of τ

pj = P [τ = εj|τ = t] = µj∑n
i=1 µi

where µi is the members’ i force of mortality;

• J is an integer random variable such that P [J = j] = pj;

• sj is the dollar value of the j’s account balance at time t;

• αi,j is the portion of j’s balance transferred to member i. Member i
receives sjαi,j. Indeed if i 6= j, i is a surviving member and receives a
non-negative dividend, while if i = j, αi,j = −1, since the dying member
j forfeits all his balance.
Notice that ∑n

i=1 αi,j = 0, meaning that the amount forfeited by j corre-
sponds to the sum of the amount received by all the surviving members;

• Ri is the amount received by member i

Ri =
n∑
j=1

αi,jsj1{J=j}

which is equal to −si if the dying member is i and a non negative value
if some other member died.

• ERi is the expected amount received by member i

ERi =
n∑
j=1

αi,jsjpj

Notice that the sum of all members’ expected amount is
n∑
i=1

ERi =
n∑
i=1

n∑
j=1

αi,jsjpj =
n∑
j=1

sjpj
n∑
i=1

αi,j = 0

Hence, if the expected amount of some member is positive, there must be
some other member with a negative expected amount. Such a situation would
generate an unfair scheme, in which some individual has the advantage over
someone else. To make it fair, Sabin imposed the requirement that each mem-
ber’s expected amount is zero, i.e. ERi = 0 ∀i.

The Fair Transfer Plan is therefore defined by αi,j. These quantities represents
the exact amount that must be transferred to each balance account i, when a
member j dies. It is a plan that satisfies the following conditions in order to
ensure fair bets to the entire pool.

αj,j = −1 for j = 1, 2, ...,m (2.15)
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0 ≤ αi,j ≤ 1 for j = 1, 2, ...,m when i 6= j (2.16)
n∑
i=1

αi,j = 0 for j = 1, 2, ...,m (2.17)

ERi =
n∑
j=1

αi,jsjpj = 0 for i = 1, 2, ...,m (2.18)

The solution to such a problem requires finding n2 unknowns, namely αi,j,
subject to 3n equality constraints and n(n − 1) inequality constraints. The
necessary condition that ensures the existence of such a plane is stated in the
following theorem.

Theorem. Let t be the time of death of a member and let n be the number of
members in the pool at time t. Let pj be the probability that member j is the
one who died at time t. Let sj be the balance held by member j at time t. Then
a Fair Transfer Plan exists if and only if

pisi ≤
n∑
j=1

pjsj ∀i = 1, ..., n

The theorem is met by not allowing any one member to contribute an excessive
amount. The member i’s risk of loss, i.e. pisi, can not be higher than the risk
of loss of the entire pool. Otherwise, whenever the necessary condition is not
satisfied, member i is not fairly compensated for his risk.

Let me show you an example in order to better understand the essence of a Fair
Transfer Plan. Consider a pool composed of 4 individuals with the following
characteristics.

i Age Gender si pi
1 80 male 2 0.55464
2 71 female 6 0.15983
3 70 female 3 0.14447
4 65 male 2 0.14107

Here a Fair Transfer Plan for the pool described above. This FTP satisfies all
the conditions required for its existence and fairness.

-1 0.75754 0.54370 0.52162
0.61302 -1 0.39621 0.38012
0.23766 0.14814 -1 0.09826
0.14932 0.09432 0.06010 -1

The actual amount received by surviving members depends on which member
has died. Consider for instance that member 3 died: his balance of s3 = 3 is
distributed to the pool according to the third column of the FTP. Member 1
receives 0.54370 · 3 = 1.6331 dollars; member 2 receives 0.39621 · 3 = 1.18863
dollars; member 3, the one who died, forfeits his entire balance and member 4
receives 0.06010 · 3 = 0.18030 dollars.
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Fair Tontine
The Fair Transfer Plan is used to build a fair tontine. In a fair tontine, mem-
bers of any age and gender join the pool by contributing a desired amount.
The initial contribution of each member may be invested, allowing the fund to
grow or shrink based on investment performance. Investments may be man-
aged collectively for the entire pool, or individually. Dividends and other cash
earnings from investments are retained in the pool and credited to the mem-
ber’s balance. Then, each time a member dies, his balance is distributed to
surviving members according to a Fair Transfer Plan. If the dying member is j,
then each surviving member i receives αi,jsj dollars, where αi,j is derived from
a FTP. If the pool is large, members die often, causing very frequent payments
to survivors. New members can join at any time, by making a contribution
of a desired amount; thus, the fair tontine can be considered to operate in
perpetuity. No member may withdraw from his account balance, ever. Once a
contribution is made, it remains in the pool, along with any investment gain;
at the member’s death, the balance is distributed to other members as sur-
vivor benefits. The situation is identical to a conventional annuity: once the
premium is paid, there is no refund of it, ever.
An important and surprising property of a fair tontine is that the expected
payout of surviving members does not depend on the the characteristics of the
pool. The number of members of the pool, ages, genders and contributions of
other people does not matter. The expected payout of a survivor depends only
on the member’s own balance and and own probability of dying. Let’s see the
formula derivation.

Consider the situation where a member i survives some time interval, say
(t1; t2). During the interval, some random collection of zero or more members
die. Each time a death occurs, survivor benefits are calculated by first deriving
a FTP, then using the FTP to distribute the dying member’s balance. The
total benefit that member i receives for surviving the interval - meaning the
sum of the survivor benefits paid to member i from FTPs during (t1; t2) - is a
random quantity. It depends on which members die, when they die, and what
their balances are when they die. This is a complicated function. However,
the expected value of member i’s total benefit has a simple expression, stated
in the following theorem.

Theorem. In a fair tontine, let s(t) for t ∈ (t1; t2) be the balance, at time t, of
a member who joins prior to t1. Let R(t1; t2) be the sum of payments received
by the member as survivor benefits during (t1; t2). Let A(t2) be the event that
the member is alive at t2. Then

E [R(t1; t2)|A(t2)] =
∫ t2

t1
s(t)µ(t)dt

where µ(t) is the member’s force of mortality function.
Furthermore, if s(t) is constant on (t1; t2), i.e. the member contribution is not
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invested, then

E [R(t1; t2)|A(t2)] = s(t) ln
(

1− F (t1)
1− F (t2)

)
= s(t) qt

1− qt

where F (t) is the member’s distribution function for time of death and qt is
the probability of dying during the interval.

A member’s expected benefit for surviving is given by a simple formula that
depends only on the member’s own balance and own probability distribution
for time of death. The demographics of the pool does not matter; all that
matters is that FTPs are used to compute survivor benefits. A young person
in a pool dominated by elderly members has the same expected benefit as
that young person would have in a pool made up of individuals matching
her age. The actual payout that a surviving member receives during a time
interval is, of course, a random variable. The probability distribution function
of that random variable most definitely depends on the parameters of the other
members. However, regardless of those parameters, its mean value is as just
described.
Figure 2.3 shows the normalized expected payout, i.e. considering s(t) = 1, for
a surviving member in a one-year time interval.8 We can see that the benefit
payout increases with age: an older member’s probability of dying is higher
than that of a younger one. The fairness of a fair tontine requires that the
older member is compensated for the higher risk, providing him with a larger
expected benefit. Similarly, the benefit for men is higher than for women,
because men are more likely to die.

Figure 2.3: Expected normalized benefit for surviving member in a Fair Tontine

Source: Sabin(2010) [27]

8In general the member’s expected benefit is also proportional to her account balance s.
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Fair Tontine Annuity
In the fair tontine just described, members make a one-time payment (the
contribution), of a desired amount, and in return receive a stream of benefits
that lasts for their lifetime. In some way, the fair tontine has the same features
as an annuity. Where an annuity and a fair tontine differs is in the timing and
values of payments: the annuity makes payments on a fixed schedule, say
monthly, with each payment having a constant expected amount. While the
fair tontine makes payments at random times (whenever a member of the pool
dies), with each benefit being a random amount whose mean value increases
with the age of individuals.

Sabin attempted to replicate the structure of a fair annuity by proposing a new
type of insurance policy: the Fair Tontine Annuity. In this section I present
the Fair Tontine Annuity which is constructed by adding two enhancements
to the fair tontine.

• Monthly accrual of payouts. To solve the problem of random timing
of payments of fair tontines and to mimic the fixed timing of annuity
payouts, we can modify the tontine as follows. Each time a member
dies, payments from the dying member are not immediately distributed,
instead they are accrued within surviving member’s accounts. At the
end of the month, accrued payments in each surviving member’s account
are paid out in a lump sum. If a member dies during the month, she
forfeits both the original contribution plus any accumulated payments
for that month. Thus, a member receives a payout only if she is alive at
the end of the month—just as with an annuity. With monthly accrual as
just described, the member receives monthly payments as in an annuity.

• Self payback. To solve the problem of random amount of payments of fair
tontine and to mimic the constant amount of annuity payouts, we can
modify the tontine as follows. At the end of each month, each surviving
member receives a benefit derived from the balances of dead people,
as in traditional fair tontine, plus also a portion of their own balance.
This "self-payback" is made according to a predefined plan such that the
expected value of the total monthly payment - meaning the expected
value of the sum of the survivor benefit plus the self payback - behaves
like the monthly payment of a fair annuity. We know that survivor
benefits, in accordance with FTP, are increasing with age; therefore, we
expect "self paybacks" to be decreasing with age so that we can ensure
constant total monthly payments over time.

I analyze in the following subsections the derivation of the expected payouts for
both a fair annuity and a fair tontine annuity, so that we can better understand
their similarity.
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Fair annuity - monthly payments

The fair annuity that Sabin wishes to replicate has the following features: the
initial premium paid at time t0 by the retiree is allocated to an investment
portfolio. Benefit amounts dn are paid monthly - at time tn = t0 + n · 1

12 for
n = 1, 2... - and fluctuate according to the performance of the fund. d0 is the
initial payout amount specified in the annuity contract and a is the assumed
interest rate. in, for n = 1, 2..., are instead the actual interest rates earned by
the underlying investment in the time interval (tn−1; tn). If the actual interest
rate in always matches a - i.e. the assumed interest rate of the contract - then
each payment dn is the constant value d0; otherwise dn fluctuates according
to:

dn = d0

n∏
k=1

(1 + ik
1 + a

)1/12

The initial premium v(t0) paid at time t0 by the annuitant is calculated as-
suming that each in= a and it is defined as:

v(t0) = d0 · La(t0)

where La(t0) is the annuity factor, i.e. the fair premium paid at time t0 for
normalized monthly payments d0 = 1 dollar.
Similarly, at time tn, if the annuitant is still alive, the balance v(tn) is the
premium the annuitant would pay to purchase an annuity with initial payment
amount of dn.

v(tn) = dn · La(tn) = dn−1

(1 + in
1 + a

) 1
12
· La(tn) (2.19)

= v(tn−1)
La(tn−1)

(1 + in
1 + a

) 1
12
· La(tn) (2.20)

Let un be the change in balance that occurs at time tn:

un = v(tn−1)(1 + in)1/12 − v(tn) (2.21)

un represents a partial distribution of the account balance to the annuitant.
It is a "self-payback", a withdrawal by the individual of the invested premium.
By combining (2.14) with (2.15) we obtain:

un = v(tn−1)(1 + in)1/12
[
1− La(tn)

La(tn−1)(1 + a)1/12

]
(2.22)

A part of the premium received at time tn is therefore given by un, i.e. the
"self-payback". The remaining portion of payment is defined by bn:

bn = dn − un = ... = v(tn−1)(i+ in)1/12 qn
1− qn

where qn is the probability of dying in the time interval (tn−1; tn). The quantity
bn can be seen as the the annuitant’s “survivor benefit” for (tn−1; tn). It is paid
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by the insurer, funded by the forfeited balances of other annuitants who have
died. In summary, a fair annuity can be viewed as a private account held
by the annuitant. The initial account balance v(t0) is the premium paid by
the annuitant. At the end of month n, if the annuitant is alive, a portion
of the current balance is paid back to the annuitant, reducing the balance to
v(tn). This self payback un is supplemented by a survivor benefit bn, paid by
the insurer. The sum dn = un + bn is the monthly payment received by each
individual.

FTA

The Fair Tontine Annuity has the same characteristics as the fair tontine,
but, as mentioned above, exhibits two adjustments so that it can perfectly
mimic the fair annuity just described. At time t0 the annuitant pays the
initial contribution v(t0), which is allocated into an investment portfolio. Each
member’s portfolio can be individually managed. We define by φi(tn−1, tn) the
growth function of the member i’s investment, meaning that if the investment
has value vi(tn−1) at time tn−1, then its value at time tn is vi(tn−1)φi(tn−1, tn).
Each member receives payments at time tn, monthly. These income payouts
are, as in the case of a fair annuity, made up of two amounts: a self payback
and a survivor benefit.
The self payback amount ui behaves in line with that of the fair annuity,
according to the formulas (2.14),(2.15).

ui(tn) = vi(tn−1)φi(tn−1, tn)− vi(tn)

vi(tn) = vi(tn−1)
Li(tn−1) · Li(tn)φi(tn−1, tn)

(1 + ai)1/12

The survivor benefit received at time tn is instead defined by Bi(tn). Consider
a period (tn−1; tn). Let N be the number of people in the pool at time tn−1.
Let k be the number of members died during the period. We define by τ1, ..., τk
the times of death occurring in the time interval, with tn−1 = τ0 < τ1 < ... <
τk < tn . The survivor benefit Bi(tn) consists of the accrued proceeds from the
Fair Transfer Plan. Initially Bi(τ0) = 0, then at each member death time τk,
it is updated as follows:

Bi(τm) = Bi(τm−1)φi(tm−1, tm) + αi,j(τm)sj(τm) for m = 1, ..., k

The balance at each death time is therefore equal to the accrued accumulated
fund plus the benefit received from the balance of member j who died. Hence,

• αi,j(τm) for m = 1, ..., k is the Fair Transfer Plan defined at time τm;

• sj(τm) is the balance of member j at time τm which evolves itself accord-
ing to

sj(τm) = vj(tn−1)φj(tn−1, τm) +Bj(τm−1)φj(τm−1, τm)
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At time tn if the individual is still alive he is paid out the accrued survivor
benefit

Bi(tn) = Bi(τk)φj(τk, tn)

The total payment that living member receives at time tn is

Di(tn) = ui(tn) +Bi(tn)

Sabin stated in a theorem that the expected value of this payment turns out
to be exactly equal to the one of a fair annuity.

Theorem. In an FTA, let v(t0) be a member’s initial contribution at a pay-
ment time t0. Let La(t0) be the annuity factor of a fair annuity purchased by
the member at t0 with assumed interest rate a. Let φ(t′; t′′) be the growth rate
of the member’s investment. Let D(tn) be the payment the member receives at
payment times tn = t0 + · n12 , n = 1, 2, ... . Let An be the event that the member
is alive at time tn. If an FTP exists at each member death in (tn−1; tn), then

E [D(tn)|A(tn)] = v(t0)
La(t0) ·

φ(t0; tn)
(1 + a) n

12

which behaves in line with the definition of dn in a fair annuity.

Again, according to the theorem, the parameters of other members of the pool
- their ages, genders, balances, assumed interest rates, etc. - do not affect
an individual member’s expected monthly payment. All that matters is that
FTPs exist so that they can be used to compute survivor benefits.

Finally, the author, in order to emphasize the importance of the new type of
insurance policy suggested, made a comparison between a fair tontine annuity
and a conventional annuity sold on the market with a 1.37% loading charge.
His main goal is to underline that an FTA outperforms in terms of cost effec-
tiveness the actual annuities that can be purchased from a typical insurance.
In the following graph he shows the maximum and minimum cumulative pay-
out over all members in a FTA: he made a simulation and plots the largest
and smallest cumulative payout that any such member receives at a given age.
For comparison, Figure 2.4 also includes the normalized cumulative payout of
a fair annuity that imposes a 1.37% mortality and expense charge.
What is perhaps surprising is that, in the figure, the FTA outperforms the
annuity for every member who lives beyond, roughly, age 75. The variance
in FTA payouts is more than offset by the cost charged by insurers, making
it preferable. This phenomenon is emphasized even more when the number
of people in the tontine pool is larger: the variance of payouts in a FTA is
greatly reduced when the pool is large, making this type of product even more
preferred. The FTA exhibited a better payout than a typical insurer-provided
annuity not just on the average, but for virtually every member who lived more
than just a few years.
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Figure 2.4: Maximum and Minimum Cumulative payout over all FTA members
vs Cumulative payout of an Annuity with 1.37% loading charge

Source: Sabin(2010) [27]

The FTA would seem to be an attractive alternative to insurer-provided an-
nuities, at least to those who can tolerate variation in monthly payments in
exchange for a better long-term result. The FTA is more cost-effective (no
insurer profit), allows for more flexible portfolio management (such as a self-
directed brokerage account), and is mostly void of creditworthiness concerns
(the assets are owned by the members). Moreover the FTA could be offered
by low-cost providers such as mutual fund houses, retail brokers, etc. and not
only by insurance companies.

2.5 Annuity Overlay Fund
The Annuity Overlay Fund of Donnelly et al. (2014)[9] is another explicit
tontine scheme. As in the Fair Tontine Annuity of Sabin(2010)[27], described
in the previous section, members receive an explicit longevity credit into their
personal account when an individual in the pool dies. On the other hand,
unlike Sabin’s plan, the AOF proposed by Donnelly is actuarially fair for any
heterogeneous group, it does not require some necessary conditions for the
existence, for example, of a fair transfer plan, which ensures fair bets.

The main goal of the authors is to enable cost transparency in life annuity
products: in general, consumers have no idea whether annuity prices are fair,
whether insurance companies are making excessive profits, or whether avail-
able information is adequate. Sources of cost are not as clear defined, there
is a lack of information for retirees, and this means that individuals can not
make informed decision when managing their assets. Thus, Donnelly aimed
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to create a very transparent product, in which costs are attributed to each
source independently and charged to each individual when they occur. The
motivation for the Annuity Overlay Fund is to arrive at a transparent market,
in which people really understand what they are paying for and can determine
if the costs charged are reasonable. Hence Donnelly envisioned a scheme in
which each year participants receive an investment statement that details their
current individual wealth, how much they have gained from investments, how
much they have earned from mortality credits (as always in tontines the wealth
of the dead people is divided among participants), management fees, adminis-
trative costs, and all other sources of expenses. In addition, each participant
could receive annual information on future projected mortality credits in order
to get a better idea of the income to which they will be entitled.

Another important feature of the tontine proposed by Donnnelly is the follow-
ing: individuals can leave the pool before death without incurring in financial
penalties. This is a very surprising property, never suggested in any other
tontine scheme, that allows individuals to remove the Annuity Overlay Fund
from all or some of their assets at any time. Similarly, participants can decide
to add the overlay to more of their assets at any time. This is made possible
because a portion of mortality credit is also given to the estates of people who
have just died, making the Annuity Overlay Fund actuarially fair at every in-
stant in time. The amount of flexibility given to retirees is very high: they can
also control their own investments, they can decide how much to invest and
where to allocate their wealth across asset classes.

In the following subsections I will analyze the Annuity Overlay Fund in detail.
First I will present a toy example, to give a clear idea of the essence of the
plan. Then, I will present the actual real plan proposed by Donnelly, with a
full analysis of mortality credits, payments structure and evolution of wealth.
Finally I will show some important results achieved by the authors through a
numerical simulation.

Basic Example
I first illustrate the Annuity Overlay Fund with a toy example that provides
the basic idea of the plan. Here, the investment risk is not considered: no
financial returns on wealth are assumed. Each participant has a fixed initial
wealth which is not invested in the market. The only things that really matter
in this example are the risk pooling mechanism and how mortality credits are
shared.
Let’s imagine that two people, Alice and Bob, decided to enter into an Annuity
Overlay Fund and pool their mortality experience together for one month. The
characteristics of the two individuals are summarized in the following table:

Name Wealth qi
Alice $1 000 000 0.2%
Bob $50 000 0.1%
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where qi represents the probability of dying in the next month of each member.
Whenever a member dies, his wealth is put into a notional mortality account.
At the end of the month, the money in the notional mortality account is shared
among all the participants, including those who just died during the month - in
this case money is paid to estate. The payment that each participant receives
from the notional mortality account, called mortality credit, is proportional to
his individual mortality rate and to his own wealth. If Alice dies during the
month, then her wealth is put into the notional mortality account, and the
same rule applies for Bob. Thus, at the end of the month, the money in the
notional mortality account is shared among Alice and Bob, in proportion to
their wealth and probability of dying.
Suppose Bob is the only one to die during the month. His wealth of $50 000
is put into the notional mortality account and then, at the end of the month,
the money in the fund are shared out as follows:

• Alice gets:

$50 000 · $1 000 000 · 0.2%
$1 000 000 · 0.2% + $50 000 · 0.1% = $48 780

• Bob gets:

$50 000 · $50 000 · 0.1%
$1 000 000 · 0.2% + $50 000 · 0.1% = $1 220

The actuarial gain for Alice is equal to $48 780, given by the amount of money
that is added to her fund, providing her with a total wealth of $1 048 780 at
the end of the month.
By the other side, Bob forfeits his wealth of $50 000, but his estate gain $1 220,
providing him with a total actuarial gain equal to −$48 780. What is lost by
Bob is earned by Alice. No money is created by pooling mortality risk: the
wealth of dead people is simply re-distributed among all the participants. The
expected actuarial gain for each participant is equal to zero over all scenarios.
For this reason at the end of the month neither Alice nor Bob have any further
actuarial obligation to each other; they can then withdraw their money and
choose whether or not to pool their mortality for another month. The sum
paid to Bob’s estate can indeed be thought of as a balancing item to make the
Annuity Overlay Fund work for any group of heterogeneous participants.
The same approach can be used to pool mortality risk among a larger group
of individuals. Let’s see how it operates.

AOF
Here I will present how the Annuity Overlay Fund operates theoretically, on a
instantaneous basis. Unlike the toy example, here we will assume returns on
investment: we will model therefore also the dynamics of assets available in
the financial market.
Let’s introduce some of the notations used:

70



CHAPTER 2. MODERN TONTINE

• M ∈ N represents the number of homogeneous groups of individuals
who participate in the AOF. Individuals in the same group are homo-
geneous in the sense that they have the same mortality characteristics,
risk preferences, age and initial wealth;

• Lm0 represents the number of individuals alive aged xm in the mth group
at time 0;

• Nm,i
t models the survival of the ith individual in the mth group at time

t. It is a Poisson process which has value 0 if the individual is alive at
time t, and 1 if the individual is dead;

• λmt is the force of mortality at time t of the Poisson process Nm,i
t ;

• Nm
t models the survival of themth group at time t. It denotes the number

of death that have occurred up to and including time t in the mth group.

Nm
t =

Lm0∑
i=1

Nm,i
t

It is again a Poisson process with rate λmt Lt− at time t, where Lt− rep-
resents the number of people alive up to t−;

• Bt is the price of the risk free asset available in the financial market:

dBt = rBtdt

where r is the constant risk free rate of return.

• St is the price of the risky asset available in the financial market. It
evolves according with a geometric brownian motion.

dSt = St(µdt+ σdZt)

S0 > 0 Constant

where Zt is a standard brownian motion, µ is the drift component and
σ the volatility.

• Wm
t is the wealth at time t of each participant in the mth group. If an

individual in the mth group dies during the short interval of time (t−; t),
then her wealth Wm

t− is put in the notional mortality account;

• Ut represents the amount of money which has passed through the notional
mortality account up to time t. The amount of money which is put into
the notional mortality account during the short interval of time (t−; t)
is:

dUt =
M∑
m=1

Wm
t−dN

m
t
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The amount dUt is then shared out at time t among all the participants who
were alive at time t−. The amount allocated to each participant is proportional
to their individual wealth and force of mortality. Thus each individual in the
kth group who was alive at time t− receives a payment at time t of:

dUt ·
W k
t−λ

k
t

M∑
m=1

Wm
t−λ

m
t L

m
t−

These payments, called mortality credits, are made independently of whether
or not participant are alive at time t.
Let us remind that the main objective of the authors is to ensure cost trans-
parency of annuity products and to increase the level of information provided
to investors. Therefore, it is very important to clearly differentiate the finan-
cial risk from the mortality risk: it is necessary to separate and define in detail
the differences between the investment gains derived from the financial market
and the actuarial gains derived from sharing the mortality risk.
We denote by Gk,i

t the total actuarial gains up to time t of an individual i in
the kth group. The change in the actuarial gains at time t is given instead by

dGk,i
t =



dUt ·
Wk
t−
λkt

M∑
m=1

Wm
t−
λmt L

m
t−

−W k
t− if individual i dies between(t−; t)

dUt ·
Wk
t−
λkt

M∑
m=1

Wm
t−
λmt L

m
t−

if individual i is alive at time t

0 if individual i dies before t−

The authors stated in a theorem a very important insight regarding instanta-
neous changes in actuarial gains.
Theorem. The expected instantaneous actuarial gains for a participant in the
Annuity Overlay Fund are zero at all times, i.e for individual i in the kth group

E
[
dGk,i

t |Ft−
]

= 0 ∀i = 1, ..., Lk0 and ∀k = 1, ...,M

The theorem emphasizes that the Annuity Overlay Fund is actuarially fair
at any given point in time: this important property ensures that individuals
can exit from the pool whenever they want and without incurring in financial
penalties.
However, even though the expected actuarial gains are zero, the incentive to
join the AOF is that the actuarial gains for a participant who survives are
always nonnegative. Indeed, conditional upon survival, the expected instanta-
neous actuarial gains for a participant in the AOF are nonnegative at all times.
As long as participants survive, they do not lose financially from participating
in the fund; they do not lose any of their money from pooling mortality risk
until they die.
If we denote by πkt the portion of wealth invested in risky assets at time t, the
total wealth dynamic of an individual i in the kth group is described by:

dW k
t = W k

t−

[(
r + πkt (µ− r)

)
dt+ σπkt dZt

]
+ dGk,i

t (2.23)
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Subject to:
W k

0 = wk0 > 0
Equation (2.23) clearly defines the differences in gains: the first two terms
are due to investment in the financial market, they represents the income
derived from both the risky and risk free asset. The third term dGk,i

t , on the
other hand, represents the instantaneous actuarial gains from participating in
the fund. Again, we can see the clear separation between the two sources of
revenue in the AOF.
In order to re-emphasize the decomposition of the two sources of risk, we
also report expectation and variance of the instantaneous return on wealth,
conditional upon survival:

E
[
dW k

t

W k
t−
|Nk,i

t = 0
]

=

r + πkt (µ− r) + λkt

1− W k
t−λ

k
t

M∑
m=1

Wm
t−λ

m
t L

m
t−


 dt

V ar

[
dW k

t

W k
t−
|Nk,i

t = 0
]

=

(σπkt )2 + (λkt )2


M∑
m=1

(Wm
t−)2λmt L

m
t− − (W k

t−)2λkt

(
M∑
m=1

Wm
t−λ

m
t L

m
t−)2


 dt

Within both of these quantities, we can clearly recognize a component due to
the investment of the ith individual in the financial market and a component
due to the sharing of mortality risk. In this way, the investor is able to identify
in detail the sources of risk, actually understand where the gains are coming
from and decide whether the plan implemented is effectively suited to his needs.

Infinite AOF
Here I present an idealized version of the Annuity Overlay Fund, called In-
finite Annuity Overlay Fund, in which there are infinitely many participants
in each homogeneous group. The actuarial fairness previously presented and
analyzed continues to hold regardless of the number of participants and the
heterogeneity between groups.
In this idealized version of AOF, we assume that at time t > 0, each group has
exactly the same number of members, so that Lt− = L1

t− = L2
t− = ... = LMt− .

The instantaneous actuarial gains provided to individual i in the kth group ,
who is assumed to be alive at time t, can then be rewritten as:

dGk,i
t = dUt ·

W k
t−λ

k
t

Lt−
M∑
m=1

Wm
t−λ

m
t

Now, if we let the number of participant tend to infinity, i.e. Lt− → ∞, the
expected instantaneous actuarial gain for an individual who is still alive at
time t is

E
[
dGk,i

t |Nk,i
t = 0

]
= λktW

k
t−dt
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while the variance is
V ar

[
dGk,i

t |Nk,i
t = 0

]
= 0

In an infinite annuity overlay fund, deaths occur continuously, which releases
a continuous flow of money into the notional mortality account. As this is
shared among infinitely-many participants, their individual wealth increases at
a continuous rate equal to their own force of mortality, with zero volatility. In
this perfect pool, the volatility of return on wealth arises solely from investment
in the financial market.
Having this in mind, we can rewrite the wealth dynamic as:

dW k
t = W k

t−

[(
r + πkt (µ− r) + λkt

)
dt+ σπkt dZt

]
(2.24)

The additional term λktW
k
t−dt emphasizes the benefit of joining the infinite

annuity overlay fund. The pooling of mortality risk increases the wealth of
single individuals in the fund, providing them with higher expected returns.

Final conclusions
To point out the relevance of the product proposed by Donnelly et al., the
authors attempted to make a comparison between an Annuity Overlay Fund
and a mortality linked fund.
A mortality linked fund is a widely available insurance product very similar to
the AOF: benefits received by annuitants are due to both investment gains and
to actuarial gains. In this case, actuarial gains are not random amount derived
from other dead members’ accounts, but are deterministic amount provided
directly by the insurance company. The deterministic mortality-linked interest
rate that the insurer pays on a member’s wealth is equal to the member’s force
of mortality but with a reduction to allow for costs. The costs are what the
insurer of the mortality–linked fund charges to the individual to remove the
latter’s mortality risk. Unlike the AOF, where the longevity risk is shared
among the members of the fund, here it is the insurance company that bears
the risk: hence it asks to be rewarded by charging loadings. If we denote
by akt the costs charged to individual k at time t, the wealth dynamic of a
mortality-linked fund owner is:

dW k
t = W k

t−

[(
r + πkt (µ− r)

)
dt+ σπkt dZt

]
+ (1− akt )λktW k

t−dt (2.25)

Subject to:
W k

0 = wk0 > 0
which results to be very similar to (2.23).

In the simulation performed by the authors, their main objective was to demon-
strate that their product, the Annuity Overlay Fund, actually outperforms the
mortality linked funds available in the market. To accomplish this, they first
calculate the instantaneous break-even costs: the akt costs borne by a mortality-
linked fund such that, given the same instantaneous volatility of wealth return,
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the expected instantaneous returns on wealth from the AOF and the mortality-
linked fund are equal. The idea is that if the actual costs charged by insurance
companies are higher than the instantaneous break-even costs calculated by
the authors, then an individual can obtain an higher expected return from the
AOF for the same amount of volatility on wealth. In figure 2.5 the authors
showed their results by expressing the break-even costs as monetary rate per
unit of wealth: 1− eλkak

Figure 2.5: Break-even costs for different pool sizes

Source: Donnelly et al.(2014)[9]
Note: Break-even costs are expressed in monetary terms.

The authors performed the simulation for different pool sizes: the first ob-
servation is that there is an inverse relationship between the total number of
participants and break-even costs. The higher the amount of people who de-
cide to share their mortality risk, the lower break-even costs: hence the more
an AOF outperforms a mortality linked fund. If break-even costs are low, it
means that costs charged by insurance companies must be low, to ensure the
same return of an AOF. If we look at the graph, we clearly understand that
costs charged by insurers of a mortality linked fund, must be lower than 0.5%
per year of wealth - across all groups - in order to be as attractive as the An-
nuity Overlay Fund.
In general, even when the total number of participant is small, break-even
costs are small; but the effect is amplified when the group size increases.
Considering that insurance companies actually charge costs higher than 0.5%
of wealth to their annuitant, in order to cover all expenses, the Annuity Over-
lay Fund proposed by Donnelly outperforms almost surely the mortality-linked
fund available in the market.
We discover that also this new type of tontine scheme, proposed by Donnelly
et al.(2014), turns out to be most cost-efficient for customers than other in-
surance products actually sold by companies. Moreover, the proposed AOF
seems very peculiar, both for its innovative attractive features and for its high
focus on transparency.
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2.6 Pooled Annuity Fund
The last modern tontine scheme that I would like to present is the Pooled
Annuity Fund proposed by Stamos(2008)[30]. The PAF is an explicit tontine
in which longevity credits are determined for an homogeneous pool. In fact,
members of the PAF are assumed to have the same age, to follow the same
investment strategy and to have the same force of mortality. The assumption of
homogeneity seems to be a bit restrictive, but in this way the author was able to
determine analytical solutions. Stamos aimed to solve a utility maximization
problem and to determine both the optimal amount of wealth invested in risky
assets and the optimal consumption rate of the fund. The author modeled the
population through a Poisson process, the risky assets through a geometric
Brownian motion, and in this way he was able to present the wealth dynamics
of both single individuals and the total Pooled Annuity Fund.

The Pooled Annuity Fund constitutes an alternative way to protect against
longevity risk compared to purchasing a standard lifetime annuity. We know
that insurance companies, whenever they sold a lifetime annuity, collect pre-
miums of annuitants and invest them into capital markets. A part of the
reward received by each retiree is therefore derived from the investment re-
turns achieved by the insurer; instead, another part of the benefit is called
mortality credit. The mortality credit is paid out in a deterministic manner
by the insurer, and is made of redistributed wealth of deceases former mem-
bers. The mortality risk in standard annuity is thus directly transferred to the
insurance company and the annuitant bears no risk.
A similar mechanism applies for the PAF: part of the investor’s gain is due to
investment returns while another part of the gain is due to mortality credits,
redistribution of wealth of dead members. Unlike standard products available
on the market, in the PAF, members have access to equity markets, can de-
cide on the optimal asset allocation strategy, can diversify their portfolios, and
take advantage of risk sharing. Moreover, in the PAF, mortality credits are
not deterministic, they depend on population development: therefore, in this
case, participants have to bear some remaining systematic mortality risk.

Stamos, running a simulation, showed that in most cases the Pooled Annuity
Fund is preferred to fixed payout annuities: investors value having access to
the stock market and the freedom to choose more than having perfect longevity
insurance. In general people prefer to decide on the optimal asset allocation
strategy rather than completely eliminate their risks. Only very risk averse
investors are more likely to pay risk premium to access private lifetime annu-
ities: they prefer to completely lay off mortality risk. However, even for a small
pool size, Stamos showed that PAFs are very effectively against longevity risk.
Obviously, if we increase the effect of pooling, if the number of members in the
PAF increases, significant utility gains are generated. The more pronounced is
the sharing effect, the more significant will be the increases in wealth of fund
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members.
Hence, Stamos presented in his paper a modern tontine capable of outper-
forming standard annuities. I will examine in the following sections the PAF
in detail: I will present its mechanism, the population model, financial markets
models and wealth dynamics.

Population Model
In order to determine the dates at which wealth of perished members are
reallocated among survivors, we have to employ an appropriate population
model. Stamos sets up a model in which the time of death of each pool member
is determined by the first jump of a Poisson Process with time-dependent
intensity. Let L0 be the initial number of pool members.
Each pool member’s time of death τi, i ∈ {1, ..., L0}, is determined by the first
jump of a Poisson Process Nt,i with intensity parameter λt,i.

τi = {min
t

: Nt,i = 1}

The Poisson Process Nt,i takes value 1 if member i dies before t, and value 0
if member i is still alive at time t.
Recall that the Pooled Annuity Fund proposed by Stamos assumes homoge-
neous investors: the hazard rates λt,i are then equal for all pool members.
For the sake of simplicity the paper assumes that individual hazard rates evolve
deterministically according to the Gompertz-Makeham mortality law:

λt,i = λt = 1
b
e(t−m)/b

where m denotes the modal time of death and b is a dispersion parameter.
The Gompertz-Makeham law of mortality constitutes the standard mortality
law in population models since it is parsimonious to handle, as only two pa-
rameters are to be estimated. Further, it captures empirical mortality rates
remarkably well.
In order to determine the total evolution of the pool’s population, let us define
Nt as

Nt =
L0∑
i=1

Nt,i

which represents the number of dead members up to time t. Nt is the sum
of Poisson processes, therefore it is itself a Poisson Process with intensity
parameter equal to the sum of the single intensity parameters of the processes
Nt,i.
The number of living member instead, follows from the above assumptions and
is given by

Lt = L0 −
L0∑
i=1

Nt,i

It is really important to have in mind the population evolution of the fund: in
each time interval of length dt, such as (t−dt; t), a random amount of members
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dNt = Nt−dt − Nt dies. The wealth owned by dNt dead members has to be
distributed among survivor members Lt. Hence, it is only by knowing accu-
rately and precisely the evolution of the fund’s population that it is possible
to determine the wealth dynamic of investors, and therefore to maximize their
utility.

Financial markets
Another important assumption that has to be made in order to define a Pooled
Annuity Fund regards financial markets. In fact, the wealth dynamic of single
investors depends also on returns from investments. Members of the PAF can
invest their wealth into one risky asset and into one riskless asset. They can
decide the riskiness of their portfolio and choose their optimal asset allocation
strategy.
The price dynamic of the riskless asset is given by the standard formula

dBt = Btrdt

where r is the locally and globally riskless interest rate.
The price dynamic of the risky asset is instead given by a standard geometric
Brownian motion:

dSt = St[µdt+ σdZt]

where dZt is the increment of a one-dimension standard Brownian motion, µ
is the drift component and σ is the volatility of the process.

Wealth Dynamic
At time t = 0 each investor pools his wealth Wi,0 inside the Pooled Annuity
Fund. Recall that the assumption of the PAF requires homogeneous investors,
meaning that each member of the fund invests the same amount of money
within it.

Wi,0 = W0 ∀i ∈ {1, ..., L0}

The total initial value of the Pooled Annuity Fund is therefore given by

WPAF,0 = L0 ·W0

The value of the PAF evolves then according to:

dWPAF,t = WPAF,t[r + πt(µ− r)− ct]dt+ πtWPAF,tσdZt

The fund is invested in financial markets; thus it earns instantaneous returns
from both risky and risk-free asset, provided that πt represents the portion of
wealth allocated in the risky asset at each time t. However a proportion ct of
the total fund is withdrawn at each time t in order to reward each member
of the pool. In fact, each investor receives benefit at time t according to the
evolution of the optimal withdrawal rates. ct represents the percentage of fund
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collected by each investor at time t and give us information about people’s
consumption behavior.
Providing that each investor has the same initial endowment W0, the fraction
of wealth owned by each investor at time t is given by

Wi,t = WPAF,t

Lt

The total Pooled Annuity Fund is split in equal shares among those who are
still alive at time t. However, we can also define the dynamic of single investors’
wealth in this way:

dWi,t = Wi,t −Wi,t− = Wi,t− [r + πt(µ− r)− ct]dt+ πtWi,t−σdZt + 1
Lt
dNtWi,t−

(2.26)
with

τi > t and Lt > 1
Anytime a pool member dies, his remaining wealth Wi,t− is reallocated among
survivors Lt. The wealth dynamic of each individual is given by gains earned
from financial markets plus gains earned from mortality credits minus the
amount of fund withdrawn.
Equation (2.26) give us a clear representation of the Pooled Annuity Fund:
each investor receives benefits from financial gains but also additional returns
due to the sharing mechanism of the tontine. Further, a portion ct of the fund
is withdrawn.

• Wi,t− [r+πt(µ− r)]dt+πtWi,t−σdZt represents gains from both the risky
and riskless asset.

• 1
Lt
dNtWi,t− represents mortality credits: the wealth of all the members

dead in dt is split among survivors.

• ctWi,t−dt is the level of consumption.

The smaller is the size of the PAF, the higher would be mortality credits, since
the wealth of dead people is reallocated among a smaller number of individuals.
However, on the other hand, the smaller is the size of the PAF, the smaller
is the probability that one of the other investors dies. Of course, if Lt = 1,
the last survivors earns no mortality credits anymore. This intuition is better
made clear by the calculation of the instantaneous expected mortality credit
(for unit of wealth):

E
[ 1
Lt
dNt

]
= λtdt

We can notice that expected instantaneous mortality credits are independent
from the pool size Lt. As already explained, the higher is the pool size, the
lower would be the amount of mortality credits, but the higher would be the
probability of earn additional gains. These two effects cancel out, resulting in
the pool size not impacting the expected instantaneous mortality credits. The
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only relevant state variable is the age: the older the pool and thus the higher
λt, the more released fund would be shared among fewer survivor making
mortality credits increase.

The variable that is instead affected by the size of the pool is the variance of
mortality credits.

V ar
[ 1
Lt
dNt

]
= λt
Lt
dt

The higher the number of investors, the more predictable becomes mortality
credits. The higher the pool size, the more deaths occur, so the more frequently
wealth redistributions among survivors take place. On the other hand, if the
number of participant in the PAF is really small, the variance of mortality
credits increase: it becomes more difficult to predict times of death.

Imagine having access to a perfect insurance pool, in which the number of
participants tends to infinity, such that

lim
Lt→∞

V ar
[ 1
Lt
dNt

]
= 0

In this context, the mortality risk is completely eliminated. We are dealing
with a perfect pool which yields deterministic income λtdt from earned mor-
tality credits. There is no uncertainty about mortality credits. The wealth
dynamic of investors is therefore restated as follows:

dWi,t = Wi,t− [r + πt(µ− r)− ct]dt+ πtWi,t−σdZt + λtWi,t−dt

which behaves in line with the infinite Annuity Overlay Fund presented by
Donnelly et al (2014)[9].

Optimization Problem
The main goal of Stamos was to determine the optimal amount of wealth in-
vested in risky assets at each time t and the optimal amount of consumption ct.
In order to determine these quantities, he solved a utility maximization prob-
lem. He assumed that all investors have homogeneous preferences described
by a CRRA utility function:

u(Ct) = C1−γ
t

1− γ γ 6= , γ > 0

where Ct = ctWt is the level of consumption at time t and γ denotes the level
of relative risk aversion. The problem consists in maximizing the expected
discounted utility of consumption:

max
[πt,ct]

E
[∫ ∞

0
e−δtu(Ct)dt

]
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Subject to

dWi,t = Wi,t− [r + πt(µ− r)− ct]dt+ πtWi,t−σdZt + 1
Lt
dNtWi,t−

After solving the first order condition for πt, Stamos obtained the following
optimal portfolio policy

πt = µ− r
γσ2 ∀t (2.27)

It is clear that the optimal asset allocation strategy results in a constant mix
rule: the portion of wealth invested in risky asset is constant over time and it
is independent of wealth dynamic and pool size.
In order to derive the optimal consumption strategy, a more complicated ap-
proach is required.
We first define the value function V (w, l, t), as the value assumed by the ex-
pected discounted utility function at time t, when Wt = w, Lt = l and when
the optimal state variables - optimal πt and ct - are plugged in.
This value function is assumed to have the following form:

V (w, l, t) = f(l, t)w
1−γ

1− γ

with lim
t→∞

f(l, t) = 0 and f(0, t) = 0.

Then, the optimal consumption policy is obtained by

ct = f(l, t)−
1
γ (2.28)

Theorem. f(l, t) that solves the first-order condition for ct and is able to
derive the optimal consumption path, must obey the following set of ordinary
differential equations:

ft(l, t)
f(l, t) + γf(l, t)−1/γ + (A− λtl) + λt(l− 1)

(
l

l − 1

)1−γ
f(l − 1, t)
f(l, t) = 0 (2.29)

where ft(l, t) denotes the partial derivative with respect to t and A being a
constant

A = (1− γ)
[
r + 1

2γ

(
µ− r
σ

)2
]
− δ

Analytical solutions to the set of ODEs can only be derived for the two extreme
cases l = 1 and l =∞.

When l = 1, only one investor lives - either because no other investors are
there or because all other investors have already perished. It can be verified
that

f(1, t) =
[∫ ∞
t

e
1
γ

∫ s
t

(A−λu)duds
]γ

(2.30)

81



CHAPTER 2. MODERN TONTINE

Thus the optimal consumption policy becomes

c(1, t) =
[∫ ∞
t

e
1
γ

∫ s
t

(A−λu)duds
]−1

(2.31)

It can be seen that the optimal consumption rate increases over time: the
present value of consumption becomes more valuable as the individual gets
older, hence as hazard rates increase. The higher is the probability of death,
the more people wish to withdraw higher amounts.

When instead l = ∞ we derive the function f(l, t) by maximizing the ex-
pected discounted utility of consumption and assuming the wealth dynamic of
a perfect pool. It can be verified that

f(∞, t) =
[∫ ∞
t

e
1
γ

∫ s
t

(A−γλu)duds
]γ

(2.32)

Thus the optimal consumption policy becomes

c(∞, t) =
[∫ ∞
t

e
1
γ

∫ s
t

(A−γλu)duds
]−1

(2.33)

Also in this case, if we assume γ > 1, the optimal consumption rate increases
over time. However, the higher the number of pool participant is, the higher
are withdrawal rates, since more pool members benefit from mortality credits.
Thus, if we compare c(∞, t) and c(1, t) we can notice that c(∞, t) > c(1, t)
almost surely.
Recall that the higher the number of participants, the lower the variance of
mortality credits. When l = ∞, the mortality risk is completely eliminated,
leading members to obtain deterministic returns and thus increase their bene-
fits. People do not need to preserve their capital, since they already know that
they will receive extra income from deceasing pool members.
On the other hand, when l = 1, people cannot afford do withdraw high
amounts, since they will not receive extra money from other deceasing mem-
bers. The last survivor does not receive mortality credits, so compared with a
very large pool, the consumption amount withdrawn is much lower.

As already mentioned, analytical solutions are not available when 1 < l <∞.
The set of ODEs (2.29) has to be solved numerically by using finite difference
methods. The function f(l, t) is indeed approximated by a step function which
takes values f̂l,i at each time t = i∆t and the partial derivative ft(l, t) is
appoximated by a forward differential quotient. The new set of ODEs becomes
thus:

f̂l,i+1f̂l,i

f̂l,i∆t
+ γf̂

−1/γ
l,i + (A− λtl) + λt(l − 1)

(
l

l − 1

)1−γ
f̂l−1,i

f̂l,i
= 0

This has to be solved recursively. Then f̂l,i is used to compute the approximate
solution of the optimal consumption strategy

ĉi = f̂
−1/γ
l,i
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Figure 2.6 shows the impact of pooling on the optimal withdrawal decision.
It can be clearly seen that the higher the number of members in the PAF is,
the higher are consumption rates, because the more pool members can benefit
from the mortality credit. The idea is that the higher are mortality credits,
the more people can afford to withdraw higher amounts during their entire
lifespan.

Figure 2.6: Optimal consumption rates of PAF

Source: Stamos(2008) [30]
Note: The graph presents the optimal descrete withdrawal function 1− e−ct for different
ages and population sizes. The expected instantaneous stock return is µ = 0.06 and the
expected instantaneous volatility is σ = 0.18. The real interest rate is set to r = 0.02. Under
this parameterization the optimal portion invested in risky asset is π = 24.69%.

We can notice that even when the pool size is equal to 100 or more, the
optimal consumption rate is only slightly below the one of the case l = ∞.
This indicates that individuals receive a stream of mortality credits that is very
similar to the perfectly diversified pool and can afford to withdraw amounts
very similar to them.
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Chapter 3

Simulations of GSA plan

In this chapter I decided to focus my attention on the group self-annuitization
plan: the GSA is one of the first modern tontine schemes proposed by Piggott
et al. (2005) [26] and represents one of the main innovative and interesting
plans suggested so far. Many other experts, such as Donnelly and Hanewald,
have analyzed the GSA plan, comparing it with other products available in
the insurance market and evaluating its attractiveness in relation to various
contracts. The GSA is a very significant implicit tontine scheme, in which
the benefits paid to retirees at each time t, are periodically adjusted taking
into account investment and mortality experience. Recall that in a group self-
annuitization plan, the retiree pays a single premium at inception, and receives
annually payments Bt until death. The benefit received at each time t evolves
according with two general rules. It can be seen as:

1.
Bt = Bt−1 ·MEAt · IRAt

Where MEAt is the mortality experience adjustment and takes different
values in the constant and varying contribution case; IRAt is the interest
rate adjustment ad it is equal to (1 +R∗t )/(1 +Rt).
The periodic benefit of a GSA plan is determined based on the previous
payment, adjusted for any deviations in mortality and interest rates from
expectations. Whenever expectation of mortality rates are not met, the
mortality experience adjustment MEAt, corrects the benefit. On the
other hand , in the event that actual earning rates deviate from expec-
tations, the interest rate adjustment IRAt, modifies the payout.

2.
Bt = Fi,t

äx+t
+MCt

Where MCt is the mortality credits achieved at time t.
The benefit payout of a member in the GSA plan can also be decomposed
into two parts: the first one corresponds to the annuity he would receive
if at time t he paid a single premium equal to Fi,t; the second one is the
mortality credit. The mortality credit represents the amount of fund of
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people who died between t − 1 and t, reallocated among members who
are still alive at time t. With this representation we are able recognize
the tontine structure of the GSA plan. People really pool their longevity
risk and share their accumulated fund.

Considering the revolutionary features offered by a GSA plan and the great
appeal of this product, I decided to devote this chapter to the illustration of
practical and realistic examples. Thus, I present here some numerical repre-
sentations of a GSA plan. I analyze in detail all of the insights introduced in
section 2.1, which is entirely devoted to the description and explanation of this
product.

I first present the assumptions made to conduct the simulations, paying par-
ticular attention to the derivation of actual survival rates.
Then, I focus my attention on the constant contribution case when an homo-
geneous cohort is assumed. I consider ten different types of pools, each with
size equal to 100 000. The first pool consists of individuals whose initial B0 is
fixed at 100. The second pool consists of members with initial B0 equal to 200.
In the third pool, B0 = 300, all the way up to an initial benefit of 1 000. For
all these cases, I simulate the actual survival pattern, the evolution of benefits,
mortality credits, mortality adjustments and the dynamics of funds over time.
For simplicity, I the ignore interest rate risk, by assuming R∗t = Rt .
Finally, I considered the varying contribution case for an homogeneous cohort.
Here, I analyze a pool consisting of 100 000 members: 10 000 of them with an
initial benefit B0 fixed at 100, other 10 000 of them with initial B0 equal to
200, other 10 000 with B0 = 300, all the way up to an initial benefit of 1 000.
Also in this case, I simulate the survival pattern, the evolution of benefits,
mortality credits, mortality adjustments and the dynamics of funds over time
for each homogeneous group and for the entire pool. Again, I ignore deviations
from earning rates by assuming R∗t = Rt.
Instead, I decide not to consider the case of inhomogenous cohorts, in which
members of different ages are allowed to join the pool, regardless of the point
in time.
I also decide to made some comparison of the GSA plan with standard annuity
contracts, in order to better understand the appeal of this product.

3.1 General Assumptions
In the simulations performed in this chapter I make some important assump-
tions. First, I set the starting age of the cohort to 65. The individuals who join
the group self-annuitization plan are all 65 years old at inception, i.e. x = 65
at time t = 0. The final age at which every members of the pool is dead is
fixed to 110. The maximum time t considered is therefore 45, after that time
the pool is totally exhausted. The pool size at inception lx is fixed to 100 000:
in both the constant and the varying contribution cases I set the number of
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members at inception to 100 000. The initial benefit payment B0 varies across
examples. For both the constant and varying contribution cases, I will explain
in more detail the value assumed by B0.

As anticipated, one of the main assumption is related to deviations in interest
rates: the expected investment earning rate R is assumed to be constant over
time, i.e. R1 = R2 = ... = R45 = R, and the actual investment rate is assumed
to coincide with the expected one, i.e. R∗ = R. As Piggott et al.(2005)
[26], I do not attempt to measure the impact of deviations from returns in
this illustration. Certainly, interest rate deviations have a large impact on
the calculation of benefit payments, perhaps even greater than the impact
resulting from mortality deviations, but in this context I preferred to focus
on longevity variation effects. The level of interest rate assumed for all the
simulations performed is 1%.

Another important assumption made concerns survival rates.
Expected survival rates are extrapolated from mortality tables available in
the Human Mortality Database (HMD) [6]. I decide to consider an Italian
mortality table based on the 1910 cohort in which the gender screened is male.
This mortality table reports survival rates px for x = 0, ..., 110.
The survival probabilities px for x = 65, ..., 110 are therefore taken as the
expected survival rates in my simulations.

Other important quantities that I calculate to derive the development of a GSA
plan are the annuity factors. Recall that the quantities äx are critical and must
be calculated taking into account expected survival rates and expected interest
rates. In the simulation, I first derive the value of ä65 as:

ä65 =
45∑
t=0

1
(1 +R)t tp65

Then, the value of the others annuity factors is derived recursively according
to the formula:

ä65+t = (ä65+t−1 − 1) · (1 +R)
p65+t−1

As anticipated, in this illustration I attempt to measure the impact of devia-
tions from mortality rates on the calculation of benefit payments. To do so, I
first require to simulate actual survival rates p∗x.
I decide to follow an approach very similar to the one used by Milevsky and
Salisbury(2015) [19]: I therefore select a binomial model to simulate actual
survival pattern. The evolution of number of survivors within the pool l∗x+t is
indeed simulated according to this formula:

l∗x+t ∼ Bin(l∗x+t−1, px+t−1)
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Where px+t−1 is taken from the mortality table and l∗x+t−1 comes from the
simulation at the previous stage. Once the actual number of survivors in the
pool has been simulated for each time t, it is possible to derive the actual
survival probabilities:

p∗x+t−1 = l∗x+t
l∗x+t−1

For each simulation performed I therefore compute the actual number of sur-
vivors l∗x+t at each time t = 0, ..., 45. Starting from the initial pool size
lx = 100 000, I simulated l∗x+1 from a binomial distribution with parameters lx
and px. Then, exploiting the knowledge of the actual number of survivors l∗x+1
I derive the number of survivors at time 2. I repeat this process until the entire
pattern of survivors is simulated. For each simulation computed, I then repeat
all the described steps: each simulation involves a different survival scenario.

3.2 Constant Contribution case
In this section I will present some numerical results obtained simulating a
constant contribution GSA plan. However, before presenting some outcome,
it is better first to explain the detailed procedures that allowed me to obtain
such illustrations. Recall that the variables available are:

• x = 65 initial age of members in the pool;

• lx = 100 000 initial pool size;

• px for x = 66, ..., 110 expected survival probability taken from the mor-
tality table;

• R = 1% expected and actual interest rate;

• äx+t for t = 0, ..., 45 annuity factors calculated according to (2.1)

• B0 initial benefit payout;

• l∗x+t for t = 0, ..., 45 actual number of survivors at time t, simulated from
a binomial distribution;

• p∗x+t for t = 0, ..., 45 actual survival rate derived from l∗x+t.

In order to obtain the evolution of benefits over time we can apply the following
recursive formula:

Bt = Bt−1 ·
px+t−1

p∗x+t−1

where we recognize that the ratio of expected to actual survival rates corre-
sponds to the mortality experience adjustment at time t.

MEAt = px+t−1

p∗x+t−1
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Another important quantity that I simulate is the mortality credit. The mor-
tality credit has the following form:

MCt = (l∗x+t−1 − l∗x+t)
l∗x+t äx+t

· F (t)

where F (t) represents the individual fund owned by each participant of the
GSA plan at time t. We saw that:

F (t) = Ft
l∗x+t−1

where Ft corresponds to the total fund of the GSA plan at time t. It evolves
according with the following recursive formula:1

Ft = (Ft−1 −Bt−1l
∗
x+t−1)(1 +R)

First Simulation - B0 = 100
I introduce in this section one simulation realized when the initial benefit is
fixed to 100. In the following table I report the evolution of the actual number
of survivors in the pool, simulated through a binomial distribution.

Age x Time t l∗x
65 0 100000
66 1 97848
67 2 95574
68 3 93282
69 4 90833
70 5 88283
71 6 85614
72 7 82857
73 8 79950
74 9 77212
75 10 74189
76 11 70943
77 12 67877
78 13 64687
79 14 61472
80 15 58125
81 16 54323
82 17 50516
83 18 46722
84 19 42705
85 20 38532
86 21 34559
87 22 30681

Age x Time t l∗x
88 23 26744
89 24 23002
90 25 19187
91 26 15719
92 27 12778
93 28 10114
94 29 7727
95 30 5810
96 31 4243
97 32 3020
98 33 2061
99 34 1338
100 35 844
101 36 526
102 37 311
103 38 171
104 39 87
105 40 46
106 41 19
107 42 10
108 43 3
109 44 0
110 45 0

1Recall that the initial total fund at time t = 0 is F0 = B0lxäx
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We can see that the number of participants in the pool obviously decreases
over time: in this simulation the pool is already exhausted at time 44, since the
last survivors of the pool live up to 108 years. In order to understand actual
deviations from expectations, let’s have a look at the evolution of benefits. I
report in the following graph the results obtained:

Figure 3.1: GSA benefit payouts - First Simulation whit B0 = 100.

The blue line represents benefits received from a GSA plan under this sim-
ulation, while the red line represents benefits paid by an ordinary lifetime
annuity with B0 = 100 constant. In this case, we can see that it is convenient
for individuals to enter in a group self-annuitization plan, instead of buying an
annuity. Hence, it is evident that benefits paid by the GSA plan are almost
always higher than 100.

The path of GSA payouts can be explained by two factors. Let us consider
Figure 3.2 which reports the evolution of mortality experience adjustments
MEAt. First of all we can notice that deviations in survival rates occurs, and
we can see a significant upward jump in mortality around age 41 and 43. Recall
that whenever the number of members in the pool is lower than expected, the
amount of benefit paid to survivors increases. We can clearly understand this
phenomenon by looking at the graph:

Figure 3.2: GSAmortality experience adjustment - First simulation withB0 = 100.
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We can see that MEAt are almost always higher than 1. Actual survival
probability are therefore lower than expected: precisely for this reason benefit
payouts are higher than 100. We can also notice that any upward/downward
jump in MEAt is totally reflected in little upward/downward jump in benefit
payouts Bt.

Another way to explain the payment path of the GSA plan is to examine
the evolution of mortality credits. In general we expect mortality credits to
increase over time, since they represents fund of dead people redistributed
among individuals who are still alive. As time passes there are many more
people dying, so many more funds that must be reallocated among a decreasing
number of members. If we look at the evolution of survivors in the table above,
we can also notice that at time t = 40 there are 46 survivors; in the period
after, at time t = 41, there are instead only 19 individuals still alive. This
means that the funds owned by the 27 members dead are all allocated to the
pocket of the individuals still alive. Precisely for this reason, the figure below
reports a jump in mortality credits at time t = 41. The same thought can be
made for the jump that occurs at time t = 43. Hence, we can notice at time
t = 42 there are 10 survivors; in the period after, at time t = 43, there are
instead only 3 individuals still alive. Again the funds owned by the 7 members
dead are all allocated to the pocket of the remaining 3 individuals still alive.

Figure 3.3: GSA mortality credits - First Simulation with B0 = 100.

The steep growth of mortality credits in later years is therefore also reflected
in the increasing behavior of benefit payments. As already mentioned, in this
simulation, benefits paid by the GSA plan seems to be higher with respects to
those paid by an ordinary annuity. In order to better compare the two contracts
I calculate the expected present discounted value of both products, also called
money’s worth by Mitchell [21]. The EPDV is derived by summing up all
the payments expected to be paid by the insurance policies, discounted back
taking into account nominal interest rates. Considering that in this simulation
the last benefit is paid at time t = 43 we can compute:

EPDV (GSA) =
43∑
t=0

Bt tpx
(1 +R)t

EPDV (Annuity) = B0

43∑
t=0

tpx
(1 +R)t
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The value obtained in this simulation are reported in the following table:

GSA Annuity
EPDV 3040.48 3000.72

It is again evident that, in this precise simulation, individuals would prefer the
GSA plan to an annuity. The expected present discounted value of the GSA
plan is better than the annuity by 1.34%.
However, let us consider in the next section a new simulation of survival pat-
tern. Thus, it is very critical to investigate whether systematically and consis-
tently the GSA plan outperforms the annuity product, or whether it was just
a casual event for this scenario.

Second Simulation - B0 = 100
I consider again a GSA plan in which the initial benefit payout B0 is fixed
to 100 and the actual number of members in the pool is simulated from a
binomial distribution. The values of the ’new’ l∗x simulated are summarized in
the following table:

Age x Time t l∗x
65 0 100000
66 1 97923
67 2 95698
68 3 93427
69 4 90959
70 5 88390
71 6 85660
72 7 82757
73 8 79843
74 9 76983
75 10 73833
76 11 70654
77 12 67596
78 13 64405
79 14 61165
80 15 57801
81 16 54090
82 17 50382
83 18 46454
84 19 42529
85 20 38410
86 21 34387
87 22 30448

Age x Time t l∗x
88 23 26544
89 24 22977
90 25 19250
91 26 15989
92 27 12972
93 28 10225
94 29 7912
95 30 6014
96 31 4384
97 32 3077
98 33 2076
99 34 1417
100 35 898
101 36 563
102 37 324
103 38 184
104 39 103
105 40 47
106 41 26
107 42 11
108 43 8
109 44 5
110 45 0

We can immediately recognize that the survival pattern generated is totally
different with respect to the one presented in the previous section. Here the
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last survivor lives up to 109 years and the pool exhausts at time 45. It is
already evident that this survival model is more optimistic than the previous
one: the number of survivors is almost always higher than before. I report in
the following graph the evolution of benefits obtained in order to get a better
idea of the GSA plan generated:

Figure 3.4: GSA benefit payouts - Second simulation with B0 = 100.

Also in this case the blue line represents benefits paid by the GSA plan for
this simulation, while the red line corresponds to benefits paid by an ordinary
lifetime annuity with B0 = 100. Now the figure is completely reversed: payouts
received from a GSA plan are almost always lower than 100. In this case, an
individual would prefer to buy an annuity instead of entering into a group
self-annuitization plan.

If we look at the mortality experience adjustments reported in figure 3.5, is in-
deed evident that actual survival rates are almost always higher than expected,
i.e. MEAt < 1. Recall that whenever the amount of survivors in the pool is
higher than expected, the amount of benefits paid to survivors decreases. In
fact, the total fund must be distributed among a larger number of individuals
than expected.

Figure 3.5: GSA mortality adjustments - Second Simulation with B0 = 100.
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Due to the high number of survivors in the pool, the amount of mortality
credits is not so large. If we look at the figure below, which illustrates the
evolution of mortality credits over time, we can see that their dynamics do not
show a strong increase, especially in final years. The number of survivors is so
high that the funds distributed are not very significant. In fact, if we compare
the mortality credits of this simulation, with the previous one, we can see that
the scale of values is totally different. Here the maximum value of MCt taken
is 60, while before it was 130.

Figure 3.6: GSA mortality credits - Second Simulation B0 = 100.

The evolution of mortality credits, which is not as increasing as before, is
therefore reflected in the evolution of benefits paid. As already mentioned, in
this simulation benefits paid by the GSA plan seems to be lower with respects
to those paid by an ordinary lifetime annuity. In order to better compare
the two products, I calculate again the expected present discounted value of
the two. Now, considering that the last payments occurs at time t = 44, I
compute:

EPDV (GSA) =
44∑
t=0

Bt tpx
(1 +R)t

EPDV (Annuity) = B0

44∑
t=0

tpx
(1 +R)t

The value obtained in this simulation are reported in the following table:
GSA Annuity

EPDV 2975.99 3022.23

It is again evident that, in this precise simulation, individuals would prefer the
annuity to the GSA plan. Thus, the expected present discounted value of the
GSA plan is worse than the annuity by 1.52%.
We obtained two completely different simulations: in one, individuals would
prefer the GSA plan, while in the other, annuity would be better. The only
way to actually learn if one product is better than the other statistically and
significantly is to perform a large number of simulations in order to capture
the overall evolution.
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General trend - B0 =100
In order to investigate the real-life attractiveness of a GSA plan relative to an
annuity, I run 100 000 simulations.
I repeat the same steps described in the previous sections 100 000 times and
I report in the following chart the general trend of GSA benefits when B0 is
fixed to 100.

Figure 3.7: GSA benefit payouts - General trend with B0 = 100.

The graph presented above is a box-plot. Box-plots are very effective methods
for fully understanding the distribution of variables and give a good indication
of how values are spread out. They display five numbers:2

• The median: 50th percentile of the dataset;

• The 25th percentile;

• The 75th percentile;

• The maximum value;

• The minimum value.

It is evident that the benefits of a GSA plan are fairly evenly distributed around
100. At early ages, variability in payments is minimal; at older ages, however,
it is clear that variance in payments increases. Thus, it is not possible to state
definitively that a GSA plan is preferable to an annuity with B0 = 100. Up to
t = 33, i.e. x = 98, the two products are very similar, whereas when t > 34
there are cases where one is really preferable to the other and other cases where
the pattern is totally reversed.

The evolution of benefits is totally linked to the value of mortality experience
adjustments. In fact, we know that whenever actual survival probabilities are

2Usually also outliers are visualized in boxplots, but I decided not to show them in this
diagram since they were irrelevant for the main focus of the search.
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higher than expected, benefits decrease and whenever survival probabilities
are lower than expected, benefits increase.
Looking at the box plot below, which shows the distribution of MEAt, it is
clear that the values are uniformly distributed around 1. They are neither
statistically greater nor less than 1: again, it is not possible to say a priori
and with certainty that a GSA plan is preferable to an annuity. Everything
depends on the survivors pattern.

Figure 3.8: GSA mortality adjustments - General trend with B0 = 100.

For the sake of completeness, I also report the trend of mortality credits in
the next graph. As expected, it is clear that mortality credits increase over
time and that their variability rises substantially in later years. Regardless of
whether or not a GSA plan is preferable to a life annuity, the evolution ofMCt
over time is increasing. The idea is that more and more people die over time,
so an increasing amount of funds must be redistributed among those who are
still alive.

Figure 3.9: GSA mortality credits - General trend with B0 = 100.
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Finally, to quantitatively compare a constant contribution GSA plan and an
annuity with constant benefit equal to 100, I also simulate the expected dis-
counted present value (EPDV), i.e. the money’s worth described by Mitchell
(1999) [21]. I consider 3 different cases:

• Simulations in which all individuals are dead at age 109, as the second
simulation presented. In these scenarios, payments continue until time
t = 44, so the EPDV must be compared with that of the annuity in which
payments continue until time t = 44, i.e. with the value of 3022.23.

• Simulations in which the pool is already depleted when individuals are
108 years old, as the first simulation presented. Here, payments continue
until time t = 43. The EPDV benchmark level of the annuity is now
3000.72.

• Simulations in which all individuals die at age 107. In this rare simula-
tions payments continue until time t = 42 and the baseline EPDV of the
annuity is 2968.12.

I report in the following graph the box-plots concerning EPDV in the three
different cases explained. The thin green line represents the EPDV of annuities.

Figure 3.10: EPDV - General trend with B0 = 100.

Note: Starting from the left, the first graph shows the simulations when the payments
continue until time t = 44, the second when t=43, and the third when t=42.
It is clear that in cases where the survival pattern is standard, as expected,
and at least one member of the pool survives to 109 years, the GSA plan offers
a money worth in line with that of the annuity. These scenarios represent
81.71% of the simulations performed. On the other hand, when mortality
increases, so people die earlier, the GSA plan is preferable to an annuity. The
payments to which individuals are subject are greater, and therefore the money
worth of these products is larger. As expected, only when survival rates drop,
the GSA plan outperforms the annuity: hence, the amount of benefit paid to
survivors increase with respect to the initial B0 fixed. However, these examples
represent a small percentage of the simulations performed: in fact, in 18% of
the scenarios, payments continue until time t = 43, and only in 0.29% of the
cases payments continue until time t = 42.

96



CHAPTER 3. SIMULATIONS OF GSA PLAN

Overall trend - General B0

I repeated all the simulations presented so far assuming different levels of initial
payout. In fact, I set B0 at 200, 300, 400, 500, 600, 700, 800, 900 and 1 000.
I found that even for levels of B0 different from 100, the general behavior of
a GSA plan is always the same. It is not possible to state that in general
annuities are better than the tontine proposed by Piggott, but neither the
opposite. For simplicity, I report in the following graphs the benefits trend of
a GSA plan when B0 = 400 and B0 = 900. The overall pattern is consistent:
there are cases where benefit payouts are greater in the GSA plan, and other
cases where the annuity pays higher benefits. Obviously, the scale of values
changes: for B0 = 400, the values are distributed evenly around 400, while for
B0 = 900, the payouts are distributed around 900.
Figure 3.11: GSA benefit payouts - General trend with B0 = 400 and B0 = 900

I also simulate EPDVs for all other levels of initial B0 and the same reasoning
as before applies. When mortality is standard, the GSA plan is really in line
with that of an annuity; however, when many more people die than expected,
the GSA plan turns out to be better.
This is a very interesting result. The annuities considered so far are fair, and
do not take into account the loading levels normally charged by insurance com-
panies. However, we know that in general the annuities proposed by insurers
are not fair: companies sell annuities to make money. In order to cope with all
the commitments, expenses and risks to which they are subject, they have to
charge higher premiums, or provide lower benefits. It is therefore evident that
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if we would consider the actual annuities available on the market, the GSA
plan would be better of annuities even in the case of normal survival patterns.
This kind of tontine would turn out to outperform typical annuities in nearly
all the simulations.

3.3 Varying Contribution case
In this section, I will present some results obtained simulating a varying con-
tribution GSA plan. But before, I will explain the procedure that allowed me
to obtain such illustrations.
The variables assumed are:

• x = 65 initial age of members in the pool;

• px for x = 66, ..., 110 expected survival probability taken from the mor-
tality table;

• R = 1% expected and actual interest rate;

• äx+t for t = 0, ..., 45 annuity factors calculated according to (2.1)

• lx = 100 000 initial total pool size;

• 10 homogeneous groups of investors;

• li,x initial pool size of the ith group. We assume li,x = 10 000 ∀i = 1, ..., 10;

• Bi,0 initial benefit payouts of single homogeneous groups.
We assume Bi,0 = i · 100 for i = 1, ..., 10;

• B0 initial total benefit. B0 = 10 000
10∑
i=1

Bi,0;

• l∗i,x+t for t = 0, ..., 45 and i = 1, ..., 10 actual number of survivors at time t
in the ith group, simulated from a binomial distribution. The simulation
procedure is exactly the same as in Section 3.2: for each homogeneous
group I simulate the survival pattern independently.

In order to obtain the evolution of benefits over time for each homogeneous
group of investors we can apply the following recursive formula:

Bi,t = Bi,t−1
px+t−1∑

At

Fj,t/Ft
for i = 1, ..., 10

where we recognize that
MEAt = px+t−1∑

At

Fj,t/Ft

The mortality experience adjustment is the same for all the groups in the GSA
plan. Departures of realized from expected mortality rates results indeed in a
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once and for all adjustment: whenever actual and expected mortalities differ,
all payments vary in the same proportion. However, In order to calculate
MEAt we must know the value of the total fund Ft and the values of single
funds Fi,t for all the individuals that are still alive at time t.

The total fund Ft evolves according to this formula:3

Ft+1 = (Ft −Bt)(1 +R)

where Bt represents to the total benefit paid at time t. It corresponds to the
sum of single benefits paid to all the members alive at time t.

Bt =
10∑
i=1

∑
At

Bi,t =
10∑
i=1

l∗i,x+tBi,t

The single individual funds Fi,t instead have the following form:4

Fi,t+1 = (F̂i,t −Bi,t)(1 +R)

where F̂i,t is simply derived from:

F̂i,t = Bi,täx+t

Another important quantity that I simulate for each homogeneous group is the
mortality credit. The mortality credits MCt are derived from funds of people
who die between t− 1 and t, taking into account the total percentage of funds
held by each group.

MCi,t =

∑
Dt−1

Fj,t · Fi,t∑
At

Fj,t

äx+t
=

10∑
j=1

(l∗j,x+t−1 − l∗j,x+t)Fi,t ·
Fi,t

10∑
j=1

l∗j,x+tFj,t

äx+t

All simulations are done recursively: exploiting the knowledge of the variables
at time t− 1 the variables at time t are derived. At each time t I first derive
the total value of the fund Ft and all the value of the individual funds Fi,t.
Then I derive the mortality experience adjustment MEAt that allows me to
calculate the benefit payments for each homogeneous group, i.e. Bi,t. Once
that all individual benefits are known, I derive the benefit for the entire group,
i.e. Bt. Finally, I compute the mortality credits.

First Simulation
In this section I will present one simulation of a varying contribution GSA
plan. The survival pattern for each homogeneous group of investor is derived
from a binomial distribution. Here, the simulated values of l∗i,x for i = 1, ..., 10
are summarized:

3The initial total fund F0 = 10 000
∑10

i=1 Bi,0äx
4The initial individual fund Fi,0 = 10 000Bi,0äx
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t l∗1,x l∗2,x l∗3,x l∗4,x l∗5,x l∗6,x l∗7,x l∗8,x l∗9,x l∗10,x
0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
1 9785 9771 9777 9795 9791 9778 9815 9774 9793 9783
2 9565 9543 9534 9566 9540 9572 9590 9518 9565 9550
3 9337 9302 9289 9333 9289 9298 9344 9317 9327 9327
4 9127 9075 9037 9097 9030 9069 9087 9079 9077 9087
5 8879 8814 8803 8853 8765 8828 8845 8835 8829 8834
6 8606 8558 8507 8566 8491 8567 8580 8532 8553 8573
7 8334 8281 8208 8281 8216 8285 8295 8230 8294 8300
8 8045 7952 7918 7969 7940 8005 8014 7931 7996 8033
9 7747 7673 7623 7687 7687 7735 7736 7671 7695 7714
10 7444 7358 7337 7366 7394 7429 7445 7377 7377 7406
11 7099 7030 7028 7018 7048 7140 7172 7062 7070 7081
12 6815 6740 6730 6724 6700 6846 6851 6736 6760 6775
13 6468 6416 6410 6386 6364 6506 6533 6380 6424 6465
14 6142 6111 6066 6052 6032 6186 6173 6045 6072 6097
15 5818 5760 5720 5703 5706 5831 5811 5710 5740 5726
16 5437 5385 5348 5318 5334 5449 5433 5350 5350 5368
17 5038 5001 4973 4948 4979 5049 5059 5004 4967 4992
18 4675 4608 4589 4543 4596 4675 4655 4616 4600 4598
19 4307 4226 4235 4150 4202 4233 4253 4241 4203 4202
20 3916 3812 3808 3737 3786 3819 3837 3837 3797 3794
21 3517 3401 3391 3313 3413 3418 3441 3494 3432 3414
22 3123 3011 3015 2939 3034 3016 3011 3096 3024 3042
23 2721 2621 2658 2554 2652 2613 2614 2721 2612 2684
24 2363 2264 2289 2197 2301 2215 2288 2360 2241 2303
25 1988 1905 1921 1862 1931 1865 1930 1967 1895 1932
26 1668 1550 1583 1529 1585 1531 1592 1627 1533 1601
27 1312 1255 1285 1224 1274 1251 1283 1317 1239 1314
28 1067 1000 1041 965 996 985 1029 1021 986 1031
29 825 773 818 742 763 739 795 775 758 775
30 623 587 635 554 555 559 587 579 571 588
31 446 411 466 399 422 391 443 428 413 441
32 310 296 328 292 280 267 331 307 289 331
33 215 187 229 169 190 191 217 216 203 231
34 145 120 159 109 121 132 147 128 147 158
35 99 78 98 68 81 91 96 87 89 96
36 60 49 62 49 56 56 65 50 55 63
37 38 31 34 27 31 28 43 30 34 34
38 22 15 19 16 14 14 25 17 22 23
39 18 9 11 10 10 8 13 6 8 7
40 10 5 4 3 6 5 7 3 8 2
41 3 2 1 3 4 2 5 2 1 0
42 1 1 0 1 1 0 3 2 0 0
43 1 0 0 0 1 0 1 1 0 0
44 1 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0100
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We can notice that up to time t = 40 there is still at least one living individual
in all the homogeneous groups. However, at time t = 41 the 10th group, the
one with an initial B0 = 1 000, is already exhausted. On the other hand, we
can observe that the 1st group is the one that lives at most: at time t = 44
there is only one individual still alive in the entire pool and he belongs to
the first group. I report in the following graph the evolution of benefits Bi,t

for each homogeneous group, in order to get a better idea of the GSA plan
generated:

Figure 3.12: Varying contribution GSA benefit payouts - First Simulation

Each line represents the benefit pattern of single groups. The color legend is
listed to the right of the chart.
We can notice that up to time t = 40, when there is at least one living individ-
ual in all groups, the trend is the same for everyone. All payments vary in the
same proportion: when there is an increase of, say, 5% in B2,t, all other pay-
ments also increase by the same percentage. After time t = 40, we can observe
that the benefit trend of the 10th group stops, since no one receives payments
anymore , i.e. they are all dead. The same is true for all other groups, when
there are no more living members the payments end. For instance, it is evident
that at time t = 41 the benefit pattern of 3rd, 6th and 9th groups, stops.
One of the things that immediately becomes apparent in the graph is the evo-
lution of the benefits of the first group: we can see a significant increase in
benefits for this group in the last year, a significant jump upwards. This is
due to the fact that the only individual still alive at the time t = 44 is in the
first group, so the funds of all the people who died during the previous year
are distributed to him; considering that all the other groups had much larger
funds than his, because they had a larger initial contribution, the portfolio of
the lucky individual still alive at the time t = 44 grows significantly.
In general, the evolution of benefits, for only those groups in which there is
someone still alive, remains consistent: payments vary in the same proportion
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across groups. This is evident when we look at the evolution of mortality ad-
justments. For varying contribution GSA plans, the MEAt are unique for the
entire pool; there is no diversification of adjustments among groups and this
is made even clearer if we look at the following figure:
Figure 3.13: Varying contribution GSA mortality adjustments - First Simulation

We can see that the mortality experience adjustment is unique for all groups.
Until time t = 40 the representative group still alive is the tenth, so we see
painted the line of its corresponding color. At time t = 41 the representative
group becomes the ninth so the color changes, then at time t = 42 turns into
the eighth and finally at time t = 44 it becomes the first.
It is evident that MEAt are more or less stable around the value of 1 up
to t = 43: there are small upward jumps that are totally reflected in the
behavior of the payment pattern. The strange thing happens at time t = 44
in correspondence of the first group, due to the reason already previously
described.

Now, let’s have a look at the evolution of mortality credits:

Figure 3.14: Varying contribution GSA mortality credits - First Simulation
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Once again, it is clear that the overall trend across groups is consistent: mor-
tality credits vary in the same proportion across groups.
The path of mortality credits is in general increasing, due to the growing
number of people dying over time. However, the higher are funds owned by
members in the pool, the higher are mortality credits received.
Further, we can clearly identify a jump in the mortality credits of the first
group, which is completely related to the reason explained earlier: at time
t = 44 the funds of people who died in group 5, 7 and 8 are completely allo-
cated to the unique individual left alive in group 1.

From the simulation performed, it seems that entering into a varying contri-
bution GSA plan is preferable to purchasing a life annuity for all investors
considered. In fact, the benefit pattern seems to be always higher than the B0
set at the beginning. However, in order to better understand the two prod-
ucts and to better compare them, I report in the following table the expected
present discounted values of the two contracts:

B0 GSA Annuity % Difference
100 3 222.46 3 022.23 6.62
200 5 955.80 5 936.25 0.33
300 8 836.83 8 819.72 0.19
400 11 911.60 11 872.5 0.33
500 15 107.07 15 003.61 0.69
600 17 673.67 17 639.45 0.19
700 21 149.90 21 005.05 0.69
800 24 171.31 24 005.77 0.69
900 26 510.50 26 459.17 0.19

1 000 29 087.69 29 078.05 0.03

It can be seen that in all cases presented, the value of the EPDV is greater
under a GSA plan than under a life annuity. In other words, in this simulation,
regardless of the initial contribution level, all individuals turn out to be better
off with a GSA plan rather than with an annuity. There are cases where the
difference between the two values is quite significant, as in the case of the first
group, and others where instead the two values are very similar. However,
in order to have a general picture of the situation, exactly as done in the
case of constant contribution, I will perform in the following section another
simulation.

Second Simulation
In this section I will perform a new simulation of a varying contribution group
self-annuitization plan. I simulate again the survival pattern l∗i,x for each ho-
mogeneous group of investors and I report them in the table below. I recall
that all the simulations are done independently: the survival pattern of each
group does not depend on the others.
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t l∗1,x l∗2,x l∗3,x l∗4,x l∗5,x l∗6,x l∗7,x l∗8,x l∗9,x l∗10,x
0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
1 9787 9775 9783 9782 9795 9810 9778 9792 9786 9766
2 9537 9536 9532 9560 9556 9593 9568 9584 9541 9545
3 9303 9304 9294 9338 9322 9342 9337 9358 9314 9314
4 9062 9046 9038 9108 9040 9074 9091 9112 9089 9076
5 8808 8793 8767 8859 8785 8823 8822 8831 8832 8795
6 8547 8535 8494 8586 8511 8560 8523 8584 8567 8517
7 8283 8256 8226 8328 8214 8251 8228 8319 8291 8221
8 8007 7947 7963 8028 7940 7945 7913 8038 7979 7942
9 7697 7690 7681 7739 7650 7652 7640 7740 7671 7680
10 7407 7390 7387 7450 7345 7343 7345 7456 7340 7375
11 7068 7054 7022 7155 7020 7025 7039 7129 7019 7040
12 6771 6749 6719 6873 6694 6740 6697 6831 6700 6707
13 6460 6406 6381 6516 6381 6436 6395 6519 6380 6391
14 6143 6057 6058 6197 6073 6094 6080 6197 6067 6111
15 5810 5745 5711 5864 5728 5752 5744 5872 5754 5729
16 5465 5374 5347 5470 5355 5391 5364 5506 5349 5352
17 5094 5004 4977 5114 4955 5016 5004 5133 4982 4982
18 4713 4609 4607 4734 4617 4589 4581 4752 4582 4610
19 4301 4205 4226 4308 4237 4236 4209 4360 4201 4238
20 3905 3753 3786 3856 3793 3836 3793 3941 3805 3853
21 3517 3384 3377 3479 3404 3448 3401 3550 3387 3449
22 3119 2947 2972 3069 3036 3064 3052 3139 2967 3039
23 2708 2557 2594 2672 2644 2663 2657 2737 2585 2637
24 2346 2215 2244 2283 2267 2312 2306 2346 2237 2252
25 1947 1857 1901 1935 1930 1934 1935 1962 1869 1903
26 1614 1553 1608 1606 1582 1584 1621 1613 1554 1585
27 1285 1258 1304 1293 1278 1301 1291 1308 1266 1299
28 1009 987 1013 1055 1013 1014 1036 1041 1020 1025
29 784 753 784 775 764 772 809 809 775 769
30 575 561 586 588 583 564 597 588 572 566
31 407 418 430 420 407 409 439 428 411 413
32 284 298 340 294 275 296 326 294 296 311
33 200 197 225 185 190 205 235 200 213 214
34 130 135 155 123 127 134 164 116 135 130
35 86 85 102 76 85 85 99 78 86 97
36 61 58 60 47 51 47 54 42 55 60
37 38 33 34 22 33 25 32 28 32 31
38 25 17 18 13 17 15 22 12 19 18
39 12 9 8 7 9 11 11 5 8 14
40 5 4 6 1 5 4 4 1 5 5
41 3 2 4 0 3 1 2 0 1 4
42 2 1 2 0 2 1 2 0 1 1
43 1 1 0 0 2 1 2 0 1 0
44 1 1 0 0 1 1 1 0 0 0
45 0 0 0 0 0 0 0 0 0 0104
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We can immediately recognize that the survival patterns generated are totally
different with respect to those presented in the previous section. Up to time
t = 40 there is at least one members in all the groups; at time t = 41 the
4th group exhausts and at time t = 44 there is still at least one individual in
groups 1, 2, 5, 6 and 7. It is therefore evident that these survival paths are
more optimistic: the case examined before projected that at time t = 44 there
was only one individual alive of the first group; now there are 5 members still
alive at time t = 44, all belonging to different groups. In order to understand
the behavior of this GSA plan I report here the evolution of benefit payouts:

Figure 3.15: Varying contribution GSA benefit payout - Second Simulation

We can see again that the trend across all groups is consistent: the payments
all vary in the same proportions. Further, as in the previous case, it is clear
that benefits stop when there is no longer any individual alive in a group.
It is evident that up to t = 40, the pattern is slightly increasing, providing
members of the GSA plan with benefits higher than annuities. After, at time
t = 42, instead the pattern becomes decreasing: the amount of individual still
alive in the entire pool is too high, mortality credits allocated among survival
members are not so significant and benefits decrease. We can emphasize this
effect by looking at the evolution of mortality experience adjustments.

Figure 3.16: Varying contribution GSA mortality adjustments - Second Simulation
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It is evident that after time t = 42, MEAt are significantly lower than 1.
Probably, as already mentioned, the amount of members alive is too high, the
percentage of fund of individual still alive is higher than expected survival

rates, i.e.

∑
At

Fi,t

Ft
> px+t−1.

This is made also cleared if we look at the evolution of mortality credits, which
are not as increasing as before:

Figure 3.17: Varying contribution GSA mortality credits - Second Simulation

We can see that mortality credits decrease in later years. However, there are
some groups which are more affected and other less. For instance, the seventh
group, suffers a significant drop in mortality credits, while the first group, is
not as impacted as the others. Obviously this is completely reflected in the
evolution of payouts: any decline in mortality credits leads to a decline in
benefits.

For the sake completeness, I also report for this simulation the expected dis-
counted present values of the GSA plan and of the annuity.

B0 GSA Annuity % Difference
100 3024.10 3022.23 0.06
200 6048.21 6044.47 0.06
300 8978.33 8904.37 0.83
400 11700.74 11631.22 0.59
500 15120.54 15111.18 0.06
600 18144.65 18133.42 0.06
700 21168.76 21155.65 0.06
800 23401.48 23262.44 0.59
900 27130.81 27006.49 0.46

1 000 29927.78 29681.26 0.83

Even in this simulation, the EPDVs of the GSA plan are greater than those
of annuities. Any individual, regardless of group, would prefer to enter into a
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varying contribution GSA plan rather than buy an annuity.
However, this is again a specific scenario generated by this simulation, not
a generic trend. In fact, we can notice the differences with respect to the
annuities are minimal compared to the previous simulation. Probably if the
survival pattern would have been even more optimistic, the result would have
been the contrary: annuity would have been preferred to the GSA plan. In
order to really understand the plan it is necessary to perform many simulations.

Overall Trend
In this section I report the results obtained from 100 000 simulations of a vary-
ing contribution GSA plan. I repeated all the steps presented in the previous
sections 100 000 times and I collect the values into a matrix.
I first show the overall trend of benefits for each homogeneous group, through
the following box-plots, and then I will comment on the outcomes.

Figure 3.18: Varying contribution GSA plan - Overall Trend
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Comparing all the above graphs there are some considerations that need to be
made.
First of all it is evident that up to time t = 40 the overall trend of benefit
payouts is more or less the same among groups. Obviously the variability of
payments increases over time, but in general the consumption received by GSA
members varies almost uniformly around the initial B0. Thus, it is not possible
to say with certainty whether a variable contribution GSA plan is preferable to
an annuity until this time: in fact, the two products appear to be very similar.
The strange thing happens when t > 40: we can see that for members with a
small initial B0, benefit tends to be statistically higher than the initial ben-
efit considered. For instance, if we look at the distribution of benefits when
B0 = 200, we can notice that at time t = 44, the payouts can reach up to a
level of 1 000. On the other hand, for members with large initial B0, benefits
tends to be statistically lower than the initial benefit considered. For example,
if we look at the distribution of benefits when B0 = 900, we can see that at
time t = 44 the maximum level reached is 900.
We understand that for members whose initial benefit B0 is small, it would be
preferable to enter into a varying contribution GSA plan if they expect to live
long. Whereas for members with a large initial benefit B0, it would be prefer-
able, especially if they survive a lot, not to enter into a variable contribution
GSA plan.
The general idea, also explained by Donnelly (2015) [8], is that poorer mem-
bers of the scheme, benefit subsidies from richer members. This scheme does
not appear to be equitable among individuals: poorer people receive, in very
late years, high payouts derived from richer people. The money goes from
the pockets of those who are richer, to the pockets of those who are poorer.
Poorer people benefit and enjoy a lot by sharing funds with richer people. If
we compare the evolution of benefits when B0 = 100 in the case of varying
contribution and in the case of constant contribution, we understand at once
how much can be convenient for poorer people to join a pool with richer peo-
ple. The maximum level of payout reached in case of constant contribution, in
a pool where all members contributes equal amount F0, is only 150. Whereas
the maximum level of payout reached in case of varying contribution, in a
pool where all members contributes different amounts, is 600. This concept is
summarized in a very precise way by a theorem stated by Donnelly(2015) [8].

Theorem. Consider a GSA plan consisting only of two groups, A and B, with
the same number of members in each group, i.e. lx = lA,x = lB,x . Each
member of Group A has initial wealth FA

0 = 1 and each member of Group B
has initial wealth FB

0 > 0. Fix a member in Group B, whom we call Bob.
For FB

0 > 1, i.e. FB
0 > FA

0 :

• Bob’s expected consumption in the GSA plan is less than his initial wealth
FB

0 ;

• Bob’s expected consumption conditional upon his survival to time 1 in
the heterogeneous GSA is less than in a homogeneous GSA, in which all
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surviving members have the same amount of wealth as Bob.

For FB
0 < 1, i.e FB

0 < FA
0

• Bob’s expected consumption in the GSA plan is greater than his initial
wealth FB

0 ;

• Bob’s expected consumption conditional upon his survival to time 1 in
the heterogeneous GSA is less than in a homogeneous GSA, in which all
surviving members have the same amount of wealth as Bob.

Watching carefully the simulations that I performed is very easy to visualize
what has been expressed in the theory by Donnelly. Further, I report in the
following graph the expected present discounted value (i.e. the money worth
of Mitchell [21]) of all the simulations made, conditioned to the survivorship
at the time t = 44. As already done in the constant contribution case I report
with a box-plot the general behaviour of the GSA money’s worth and with a
thin green line the benchmark level of an annuity. In the left panel I consider
the poorest members, those with an initial payout B0 = 100, and in the right
panel I consider the richest individuals, those with an initial benefit B0 = 1000.

Figure 3.19: EPDV - General trend conditional upon survival at time t = 44.

It is evident that for poorer members, the EPDV of the GSA plan is higher than
that of the annuity in most cases. On the other hand, for richest individuals
the exact reverse applies: the EPDV of the annuity is higher than that of the
GSA plan. Again, it is clear that, conditional upon survival to time t = 44,
poorest members benefit more from joining the pool.

In this type of tontine there is therefore a form of discrimination, in the sense
of Milevsky and Salisbury (2016) [20]: the richest are forced to pay part of
the benefits to poorest. But this can also be viewed as a form of solidarity, in
which there are people who pay more and substitute for others.
The same argument can be made in a GSA plan in which people of different
ages are allowed to enter in the pool, i.e. when we consider inhomogeneous
cohorts. Older people are discriminated against younger people. The young
benefit from subsidies from the old.
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Conclusions

Longevity risk is one of the major issues facing retirees. To mitigate the im-
pact and severity of this challenge, individuals may choose to transfer their
risks directly to insurance companies and annuitize their accumulated pension
pot. Historically, and especially under pay-as-you-go or generally public pen-
sion schemes, individuals were forced to hedge against longevity risk through
annuity products.

In this thesis, I looked at other potential options available to retirees. In par-
ticular, I focused my attention on modern tontines, which are very innovative
and interesting products that can be seen as viable sustainable alternatives.
In reviewing the various tontines proposed in the literature, a very interesting
feature common to almost all products emerged: almost all modern tontines
have returns and costs in line with fair annuity products. Tontine benefit
payments are more volatile, but in general the payout patterns of the two con-
tracts are really similar. However, insurance companies do not actually sell
fair annuities in the marketplace. Insurers, in order to sustain their costs and
risks, charge loadings to fair premiums. Premiums received by insurers are
therefore higher than those assumed in fair annuities, or consistently, benefits
received by pensioners are lower. The insurance company bears longevity risks
of retirees and must be compensated for this.
In contrast, in a tontine there is a sharing mechanism: there is no an outside
financial institution that assumes additional risks and guarantees certain in-
comes. Therefore, because of the risk-pooling mechanism among members, for
the same level of benefits, the costs of a tontine will certainly be lower than
an annuity sold in the market. Especially for the Group Self-Annuitization
plan, for which I performed a simulation, this insight was evident. The GSA
plan with constant contribution turned out to be in line with a fair annuity;
the payout dynamic of the GSA plan reflects fair annuities and the money’s
worth of the two products was similar. But if we considered actual annuities
sold in the market, with higher costs or lower payments, the GSA plan would
turn out to perform better in almost every simulation.
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The important aspect to be emphasized is that the tontines proposed in this
work, and in particular the GSA plan, do not need an insurance company to be
sold. Through the internal mechanism of risk sharing, the inside management
of funds and the distribution of dividends among survivors, the tontines are
able to be managed also by other types of financial providers, at a much lower
cost. External providers, if present, would have to deal with more managerial
and operational aspects. They would not have to take on the risks of all
policyholders and provide them with a certain monthly return until death. In
addition, they do not need to set aside solvency capital and meet supervisory
requirements imposed by the authorities.
In a tontine, the pooling mechanism is the essential core.

Tontines should therefore be considered as appealing ways to fund later years
and solve a lot of the problems to which many countries are subjected. Tontines
may have considerable appeal in countries that have adopted public pay-as-
you-go or defined benefit pension systems. There are indeed sustainability and
funding challenges that can only be addressed through new products, such as
tontine or pooled funds, that innovate the way longevity risk is managed.
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Code Constant Contribution GSA plan - One
Simulation
Definition of variables:
male1910 = read_ex c e l ( " male1910 . x l sx " ) #mor ta l i t y t a b l e
R = 0.01 #in t e r e s t ra t e
B_0 = 100 #i n i t i a l b e n e f i t s e t a l s o equa l to 200 ,300 ,400 ,500 ,
600 ,700 ,800 ,900 and 1000
l_x = 100000 #i n i t i a l poo l s i z e
x = 65 #age o f members at time 0

p_x = rep (0 , 45 ) #EXPECTED su r v i v a l r a t e s taken from mor t a l i t y t a b l e
for ( i in 1 : 45 )
{ p_x [ i ] = male1910$ l x [ x+i +1]/male1910$ l x [ x+i ] }

a_x = rep (0 , 46 ) #Annuity f a c t o r s
for ( t in 0 : 45 ) #Fi r s t annui ty f a c t o r
{

c = ((1+R)^−t ) ∗ ( male1927$ l x [ x+t+1]/male1927$ l x [ x+1])
a_x [ 1 ] = a_x [ 1 ] + c

}

for ( i in 1 : 45 ) #ca l c u l a t i n g o ther annuity f a c t o r s r e c u r s i v e l y
{ a_x [ i +1] = ( a_x [ i ]−1)∗(1+R)/ ( male1927$ l x [ x+i +1]/male1927$ l x [ x+i ] ) }

Simulation of actual survivors:
Actual_l_x = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s
Actual_l_x [ 1 ] <− l_x

for ( i in 1 : 45 )
{

Actual_l_x [ i +1] = rbinom (1 , Actual_l_x [ i ] , p_x [ i ] )
}

Simulation of benefit payouts:
Fund_t <− rep (0 , 46 ) #t o t a l fund
IndividualFund_t <− rep (0 , 46 ) #ind i v i d u a l fund
B_t <− rep (0 , 46 ) #ben e f i t payout
Fund_t [ 1 ] = B_0 ∗ a_x [ 1 ] ∗ l_x
IndividualFund_t [ 1 ] = B_0 ∗ a_x [ 1 ]
B_t [ 1 ] = B_0

for ( i in 2 : 46 )
{

i f ( Actual_l_x [ i ] !=0)
{Fund_t [ i ] = (Fund_t [ i −1]−B_t [ i −1]∗Actual_l_x [ i −1])∗(1+R)
IndividualFund_t [ i ] = Fund_t [ i ] /Actual_l_x [ i −1]}
i f ( Actual_l_x [ i ] ==0)
{Fund_t [ i ] =0
IndividualFund_t [ i ] =0}

B_t [ i ] = Fund_t [ i ] / ( Actual_l_x [ i ] ∗a_x [ i ] )
}
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Derivation of mortality adjustments and mortality credits:
MEA_t <− rep (0 , 45 ) #mor ta l i t y adjus tments

for ( i in 2 : 45 )
{

MEA_t [ i −1] = B_t [ i ] /B_t [ i −1]
}

MC_t <− rep (0 , 45 ) #mor ta l i t y c r e d i t s
for ( t in 2 : 45 )
{

MC_t [ t −1] = ( Actual_l_x [ t−1]−Actual_l_x [ t ] ) / ( Actual_l_x [ t ] ) ∗
IndividualFund_t [ t ] /a_x [ t ]

}

Derivation of expected present discounted value of GSA plan:
p_x = c (1 , p_x )
EPDV_GSA = 0
for ( i in 0 : 45 )
{

i f ( i s .nan(B_t [ i +1]))
{break}

c = p_x [ i +1]∗B_t [ i +1]∗((1+R)^(− i ) )
EPDV_GSA = EPDV_GSA + c

}

EPDV_Annuity = 0
for ( i in 0 : 45 )
{

i f ( i s .nan(B_t [ i +1]))
{break}
d = p_x [ i +1]∗B_0∗((1+R)^(− i ) )
EPDV_Annuity = EPDV_Annuity + d

}

Charts:
Bene f i t s <− data . frame (cbind (c ( 0 : 4 5 ) , rep (100 ,46 ) , B_t [ 1 : 4 6 ] ) )
ggp lot ( ) + theme_c l a s s i c ( ) +

geom_l i n e (data=Bene f i t s , aes ( x=X1 , y=X3 , col=’GSA’ ) , lwd=1)+
geom_l i n e (data=Bene f i t s , aes ( x=X1 , y=X2 , col=’Annuity ’ ) , lwd=1, l t y=2)+
ylab ( ’ Bene f i t s ’ ) + xlab ( ’ time␣ t ’ )

MEA <− data . frame (cbind (c ( 1 : 4 5 ) , rep ( 1 , 45 ) , MEA_t [ 1 : 4 5 ] ) )
ggp lot ( ) + theme_c l a s s i c ( ) +

geom_l i n e (data=MEA, aes (x=X1 , y=X3) , col =" blue3 " , lwd=1)+
geom_l i n e (data=MEA, aes (x=X1 , y=X2) , col =" red3 " , lwd=1, l t y=2)+
ylab ( ’MEA’ ) + xlab ( ’ time␣ t ’ )

MC <− data . frame (cbind (c ( 1 : 4 5 ) , MC_t [ 1 : 4 5 ] ) )
ggp lot (data=MC, aes ( x=X1 , y=X2) ) + theme_c l a s s i c ( ) +

geom_po int ( col =" blue3 " , lwd=2)+
ylab ( ’MC’ ) + xlab ( ’ time␣ t ’ )
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Code Constant Contribution GSA plan - Gen-
eral Trend
100 000 simulations:
N= 100000
Actual_l_x = matrix (0 , N, 46) #ACTUAL number o f s u r v i v o r s
Actual_l_x [ , 1 ] <− l_x
Fund_t <− matrix (0 ,N, 4 6 ) #Fund va lue at time t
Fund_t [ , 1 ] = B_0 ∗ a_x [ 1 ] ∗ l_x
IndividualFund_t <− matrix (0 ,N, 4 6 ) #ind i v i d u a l fund at time t
IndividualFund_t [ , 1 ] = B_0 ∗ a_x [ 1 ]
B_t <− matrix (0 ,N, 4 6 ) #ben e f i t a t time t
B_t [ , 1 ] = B_0
MEA_t <− matrix (1 ,N, 4 6 ) #mor ta l i t y adjustment
MC_t <− matrix (0 ,N, 4 5 ) #mor ta l i t y c r e d i t

for ( i in 1 :N)
{

for ( j in 2 : 46 )
{
Actual_l_x [ i , j ] = rbinom (1 , Actual_l_x [ i , j −1] , p_x [ j −1])
i f ( Actual_l_x [ i , j ] != 0)
{Fund_t [ i , j ] = (Fund_t [ i , j −1]−B_t [ i , j −1]∗Actual_l_x [ i , j −1])∗(1+R)
IndividualFund_t [ i , j ] = Fund_t [ i , j ] /Actual_l_x [ i , j −1]}

else
{ Fund_t [ i , j ] = 0

IndividualFund_t [ i , j ] =0
}

B_t [ i , j ] = Fund_t [ i , j ] / ( a_x [ j ] ∗Actual_l_x [ i , j ] )

MEA_t [ i , j −1] = B_t [ i , j ] /B_t [ i , j −1]
MC_t [ i , j −1] = ( Actual_l_x [ i , j −1]−Actual_l_x [ i , j ] ) / ( Actual_l_x [ i , j ] ) ∗

IndividualFund_t [ i , j ] /a_x [ j ] }
}

B_t_new <− data . frame (B_t )
colnames (B_t_new) <− c ( 1 : 4 6 )
boxplot (B_t_new [ , 1 : 4 5 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)

MC_new <− data . frame (MC_t )
colnames (MC_new) <− c ( 1 : 4 5 )
boxplot (MC_new [ , 1 : 4 3 ] , col = 10 , xlab =’ time␣ t ’ , y lab = ’ Morta l i ty ␣ c r e d i t s ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)

MEA_new <− data . frame (MEA_t )
colnames (MEA_new) <− c ( 1 : 4 5 )
boxplot (MEA_new [ , 1 : 4 3 ] , col = 15 , xlab =’ time␣ t ’ , y lab = ’ Morta l i ty ␣Adj ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)

120



EPDVs:
EPDV_GSA = rep (0 ,N)
for ( j in 1 :N){
for ( i in 0 : 45 )
{

i f ( i s .nan(B_t [ j , i +1]))
{break}
c = p_x [ i +1]∗B_t [ j , i +1]∗((1+R)^(− i ) )
EPDV_GSA[ j ] = EPDV_GSA[ j ] + c

}}

EPDV_Annuity1 = 0 #confronto con poo l in cu i muoiono t u t t i a 109 anni
EPDV_Annuity2 = 0 #confronto con poo l in cu i muoiono t u t t i a 108 anni
EPDV_Annuity3 = 0 #confronto con poo l in cu i muoiono t u t t i a 107 anni

for ( i in 0 : 44 )
{

d = p_x [ i +1]∗B_0∗((1+R)^(− i ) )
EPDV_Annuity1 = EPDV_Annuity1 + d

}

for ( i in 0 : 43 )
{

d = p_x [ i +1]∗B_0∗((1+R)^(− i ) )
EPDV_Annuity2 = EPDV_Annuity2 + d

}

for ( i in 0 : 42 )
{

d = p_x [ i +1]∗B_0∗((1+R)^(− i ) )
EPDV_Annuity3 = EPDV_Annuity3 + d

}

boxplot (EPDV_GSA[which( i s . f i n i t e (B_t [ , 4 5 ] ) ) ] ,
o u t l i n e = FALSE, col=" darkgreen " )

abline (h= EPDV_Annuity1 , col=11)

boxplot (EPDV_GSA[which( i s . f i n i t e (B_t [ , 4 4 ] ) & i s .nan(B_t [ , 4 5 ] ) ) ] ,
o u t l i n e = FALSE, col=" darkgreen " )

abline (h= EPDV_Annuity2 , col=11)

boxplot (EPDV_GSA[which( i s . f i n i t e (B_t [ , 4 3 ] ) & i s .nan(B_t [ , 4 4 ] ) ) ] ,
o u t l i n e = FALSE, col=" darkgreen " )

abline (h= EPDV_Annuity3 , col=11)
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Code Varying Contribution GSA plan - One
Simulation
Definition of variables:
male1910 = read_ex c e l ( ’ male1910 . x l sx ’ )
R = 0.01 #in t e r e s t ra t e
B_01 = 100 #i n i t i a l b e n e f i t group 1
B_02 = 200 #i n i t i a l b e n e f i t group 2
B_03 = 300
B_04 = 400
B_05 = 500
B_06 = 600
B_07 = 700
B_08 = 800
B_09 = 900
B_10 = 1000

l_x1 = 10000 #i n i t i a l poo l s i z e o f a l l groups
x = 65 #age o f members at time 0

p_x = rep (0 , 45 ) #EXPECTED su r v i v a l r a t e s
for ( i in 1 : 44 )
{ p_x [ i ] = male1910$ l x [ x+i +1]/male1910$ l x [ x+i ] }

a_x = rep (0 , 46 ) #Annuity f a c t o r s
for ( t in 0 : 45 )# Fi r s t Annuity f a c t o r
{

c = ((1+R)^−t ) ∗ ( male1927$ l x [ x+t+1]/male1927$ l x [ x+1])
a_x [ 1 ] = a_x [ 1 ] + c
}

for ( i in 2 : 46 ) #othe r s r e c u r s i v e l y
{ a_x [ i ] = ( a_x [ i −1]−1)∗(1+R)/ ( male1927$ l x [ x+i ] /male1927$ l x [ x+i −1]) }

Simulation of actual survivors:
Actual_l_x1 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group1
Actual_l_x2 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group2
Actual_l_x3 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group3
Actual_l_x4 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group4
Actual_l_x5 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group5
Actual_l_x6 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group6
Actual_l_x7 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group7
Actual_l_x8 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group8
Actual_l_x9 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group9
Actual_l_x10 = rep (0 , 46 ) #ACTUAL number o f s u r v i v o r s group10

Actual_l_x1 [ 1 ] <− l_x1 , Actual_l_x2 [ 1 ] <− l_x1 , Actual_l_x3 [ 1 ] <− l_x1
Actual_l_x4 [ 1 ] <− l_x1 , Actual_l_x5 [ 1 ] <− l_x1 , Actual_l_x6 [ 1 ] <− l_x1
Actual_l_x7 [ 1 ] <− l_x1 , Actual_l_x8 [ 1 ] <− l_x1 , Actual_l_x9 [ 1 ] <− l_x1
Actual_l_x10 [ 1 ] <− l_x1
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for ( i in 1 : 45 )
{

Actual_l_x1 [ i +1] = rbinom (1 , Actual_l_x1 [ i ] , p_x [ i ] )
Actual_l_x2 [ i +1] = rbinom (1 , Actual_l_x2 [ i ] , p_x [ i ] )
Actual_l_x3 [ i +1] = rbinom (1 , Actual_l_x3 [ i ] , p_x [ i ] )
Actual_l_x4 [ i +1] = rbinom (1 , Actual_l_x4 [ i ] , p_x [ i ] )
Actual_l_x5 [ i +1] = rbinom (1 , Actual_l_x5 [ i ] , p_x [ i ] )
Actual_l_x6 [ i +1] = rbinom (1 , Actual_l_x6 [ i ] , p_x [ i ] )
Actual_l_x7 [ i +1] = rbinom (1 , Actual_l_x7 [ i ] , p_x [ i ] )
Actual_l_x8 [ i +1] = rbinom (1 , Actual_l_x8 [ i ] , p_x [ i ] )
Actual_l_x9 [ i +1] = rbinom (1 , Actual_l_x9 [ i ] , p_x [ i ] )
Actual_l_x10 [ i +1] = rbinom (1 , Actual_l_x10 [ i ] , p_x [ i ] )

}

Simulation of benefit payouts
Fund_t <− rep (0 , 46 ) #TOTAL fund o f the en t i r e poo l
IndividualFund1_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 1
IndividualFund2_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 2
IndividualFund3_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 3
IndividualFund4_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 4
IndividualFund5_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 5
IndividualFund6_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 6
IndividualFund7_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 7
IndividualFund8_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 8
IndividualFund9_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 9
IndividualFund10_t <− rep (0 , 46 ) #Ind i v i d ua l Fund group 10

TotalIndiv idualFund1_t <− rep (0 , 45 ) #F hat
TotalIndiv idualFund2_t <− rep (0 , 45 )
Total Indiv idualFund3_t <− rep (0 , 45 )
Total Indiv idualFund4_t <− rep (0 , 45 )
Total Indiv idualFund5_t <− rep (0 , 45 )
Total Indiv idualFund6_t <− rep (0 , 45 )
Total Indiv idualFund7_t <− rep (0 , 45 )
Total Indiv idualFund8_t <− rep (0 , 45 )
Total Indiv idualFund9_t <− rep (0 , 45 )
TotalIndiv idualFund10_t <− rep (0 , 45 )

B_t1 <− rep (0 , 46 ) #Bene f i t group 1
B_t2 <− rep (0 , 46 ) #Bene f i t group 2
B_t3 <− rep (0 , 46 ) #Bene f i t group 3
B_t4 <− rep (0 , 46 ) #Bene f i t group 4
B_t5 <− rep (0 , 46 ) #Bene f i t group 5
B_t6 <− rep (0 , 46 ) #Bene f i t group 6
B_t7 <− rep (0 , 46 ) #Bene f i t group 7
B_t8 <− rep (0 , 46 ) #Bene f i t group 8
B_t9 <− rep (0 , 46 ) #Bene f i t group 9
B_t10 <− rep (0 , 46 ) #Bene f i t group 10
B_t <− rep (0 , 46 ) #TOTAL b e n e f i t e n t i r e poo l

Fund1_t [ 1 ] = B_01 ∗ a_x [ 1 ] ∗ l_x1 , Fund2_t [ 1 ] = B_02 ∗ a_x [ 1 ] ∗ l_x1
Fund3_t [ 1 ] = B_03 ∗ a_x [ 1 ] ∗ l_x1 , Fund4_t [ 1 ] = B_04 ∗ a_x [ 1 ] ∗ l_x1
Fund5_t [ 1 ] = B_05 ∗ a_x [ 1 ] ∗ l_x1 , Fund6_t [ 1 ] = B_06 ∗ a_x [ 1 ] ∗ l_x1
Fund7_t [ 1 ] = B_07 ∗ a_x [ 1 ] ∗ l_x1 , Fund8_t [ 1 ] = B_08 ∗ a_x [ 1 ] ∗ l_x1
Fund9_t [ 1 ] = B_09 ∗ a_x [ 1 ] ∗ l_x1 , Fund10_t [ 1 ] = B_10 ∗ a_x [ 1 ] ∗ l_x1
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Fund_t [ 1 ] = Fund1_t [ 1 ] + Fund2_t [ 1 ] + Fund3_t [ 1 ] + Fund4_t [ 1 ]
+Fund5_t [ 1 ] +Fund6_t [ 1 ] +Fund7_t [ 1 ] +Fund8_t [ 1 ] +Fund9_t [ 1 ] +Fund10_t [ 1 ]

IndividualFund1_t [ 1 ] = B_01 ∗ a_x [ 1 ] , IndividualFund2_t [ 1 ] = B_02 ∗ a_x [ 1 ]
IndividualFund3_t [ 1 ] = B_03 ∗ a_x [ 1 ] , IndividualFund4_t [ 1 ] = B_04 ∗ a_x [ 1 ]
IndividualFund5_t [ 1 ] = B_05 ∗ a_x [ 1 ] , IndividualFund6_t [ 1 ] = B_06 ∗ a_x [ 1 ]
IndividualFund7_t [ 1 ] = B_07 ∗ a_x [ 1 ] , IndividualFund8_t [ 1 ] = B_08 ∗ a_x [ 1 ]
IndividualFund9_t [ 1 ] = B_09 ∗ a_x [ 1 ] , IndividualFund10_t [ 1 ] = B_10 ∗ a_x [ 1 ]

B_t1 [ 1 ] = B_01 , B_t2 [ 1 ] = B_02 , B_t3 [ 1 ] = B_03
B_t4 [ 1 ] = B_04 , B_t5 [ 1 ] = B_05 , B_t6 [ 1 ] = B_06
B_t7 [ 1 ] = B_07 , B_t8 [ 1 ] = B_08 , B_t9 [ 1 ] = B_09 , B_t10 [ 1 ] = B_10
B_t [ 1 ] = (B_01 + B_02 + B_03 + B_04 + B_05 + B_06

+ B_07 + B_08 + B_09 + B_10)∗ l_x1

denom <− rep (0 , 46 ) #funds o f s u r v i v o r s

for ( i in 2 : 46 )
{

Fund_t [ i ] = (B_t [ i −1])∗ ( a_x [ i −1] − 1)∗(1+R)
B_t [ i ] = Fund_t [ i ] /a_x [ i ]

i f ( Actual_l_x1 [ i ] !=0)
{ Total Indiv idualFund1_t [ i −1] = B_t1 [ i −1]∗a_x [ i −1]

IndividualFund1_t [ i ] = ( Total Indiv idualFund1_t [ i −1] − B_t1 [ i −1] )∗(1+R)}
else
{ IndividualFund1_t [ i ] = 0}

i f ( Actual_l_x2 [ i ] !=0)
{ Total Indiv idualFund2_t [ i −1] = B_t2 [ i −1]∗a_x [ i −1]
IndividualFund2_t [ i ] = ( TotalIndiv idualFund2_t [ i −1] − B_t2 [ i −1] )∗(1+R)}
else
{ IndividualFund2_t [ i ] = 0}

i f ( Actual_l_x3 [ i ] !=0)
{ Total Indiv idualFund3_t [ i −1] = B_t3 [ i −1]∗a_x [ i −1]
IndividualFund3_t [ i ] = ( TotalIndiv idualFund3_t [ i −1] − B_t3 [ i −1] )∗(1+R)}
else
{ IndividualFund3_t [ i ] = 0}

i f ( Actual_l_x4 [ i ] !=0)
{ Total Indiv idualFund4_t [ i −1] = B_t4 [ i −1]∗a_x [ i −1]
IndividualFund4_t [ i ] = ( TotalIndiv idualFund4_t [ i −1] − B_t4 [ i −1] )∗(1+R)}
else
{ IndividualFund4_t [ i ] = 0}

i f ( Actual_l_x5 [ i ] !=0)
{ Total Indiv idualFund5_t [ i −1] = B_t5 [ i −1]∗a_x [ i −1]
IndividualFund5_t [ i ] = ( TotalIndiv idualFund5_t [ i −1] − B_t5 [ i −1] )∗(1+R)}
else
{ IndividualFund5_t [ i ] = 0}

i f ( Actual_l_x6 [ i ] !=0)
{ Total Indiv idualFund6_t [ i −1] = B_t6 [ i −1]∗a_x [ i −1]
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IndividualFund6_t [ i ] = ( Total Indiv idualFund6_t [ i −1] − B_t6 [ i −1] )∗(1+R)}
else
{ IndividualFund6_t [ i ] = 0}

i f ( Actual_l_x7 [ i ] !=0)
{ Total Indiv idualFund7_t [ i −1] = B_t7 [ i −1]∗a_x [ i −1]
IndividualFund7_t [ i ] = ( TotalIndiv idualFund7_t [ i −1] − B_t7 [ i −1] )∗(1+R)}
else
{ IndividualFund7_t [ i ] = 0}

i f ( Actual_l_x8 [ i ] !=0)
{ Total Indiv idualFund8_t [ i −1] = B_t8 [ i −1]∗a_x [ i −1]
IndividualFund8_t [ i ] = ( TotalIndiv idualFund8_t [ i −1] − B_t8 [ i −1] )∗(1+R)}
else
{ IndividualFund8_t [ i ] = 0}

i f ( Actual_l_x9 [ i ] !=0)
{ Total Indiv idualFund9_t [ i −1] = B_t9 [ i −1]∗a_x [ i −1]
IndividualFund9_t [ i ] = ( TotalIndiv idualFund9_t [ i −1] − B_t9 [ i −1] )∗(1+R)}
else
{ IndividualFund9_t [ i ] = 0}

i f ( Actual_l_x10 [ i ] !=0)
{ TotalIndiv idualFund10_t [ i −1] = B_t10 [ i −1]∗a_x [ i −1]
IndividualFund10_t [ i ] = ( TotalIndiv idualFund10_t [ i −1] − B_t10 [ i −1] )∗(1+R)}
else
{ IndividualFund10_t [ i ] = 0}

denom [ i ] =IndividualFund1_t [ i ] ∗Actual_l_x1 [ i ]+ IndividualFund2_t [ i ] ∗Actual_l_x2 [ i ]
+ IndividualFund3_t [ i ] ∗Actual_l_x3 [ i ]+ IndividualFund4_t [ i ] ∗Actual_l_x4 [ i ]
+ IndividualFund5_t [ i ] ∗Actual_l_x5 [ i ]+ IndividualFund6_t [ i ] ∗Actual_l_x6 [ i ]
+ IndividualFund7_t [ i ] ∗Actual_l_x7 [ i ]+ IndividualFund8_t [ i ] ∗Actual_l_x8 [ i ]
+ IndividualFund9_t [ i ] ∗Actual_l_x9 [ i ]+ IndividualFund10_t [ i ] ∗Actual_l_x10 [ i ]

B_t1 [ i ] = B_t [ i ] ∗ ( IndividualFund1_t [ i ] ) / (denom [ i ] )
B_t2 [ i ] = B_t [ i ] ∗ ( IndividualFund2_t [ i ] ) / (denom [ i ] )
B_t3 [ i ] = B_t [ i ] ∗ ( IndividualFund3_t [ i ] ) / (denom [ i ] )
B_t4 [ i ] = B_t [ i ] ∗ ( IndividualFund4_t [ i ] ) / (denom [ i ] )
B_t5 [ i ] = B_t [ i ] ∗ ( IndividualFund5_t [ i ] ) / (denom [ i ] )
B_t6 [ i ] = B_t [ i ] ∗ ( IndividualFund6_t [ i ] ) / (denom [ i ] )
B_t7 [ i ] = B_t [ i ] ∗ ( IndividualFund7_t [ i ] ) / (denom [ i ] )
B_t8 [ i ] = B_t [ i ] ∗ ( IndividualFund8_t [ i ] ) / (denom [ i ] )
B_t9 [ i ] = B_t [ i ] ∗ ( IndividualFund9_t [ i ] ) / (denom [ i ] )
B_t10 [ i ] = B_t [ i ] ∗ ( IndividualFund10_t [ i ] ) / (denom [ i ] )

}

Derivation of mortality credits and mortality adjustment:

MEA1_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 1
MEA2_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 2
MEA3_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 3
MEA4_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 4
MEA5_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 5
MEA6_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 6
MEA7_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 7
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MEA8_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 8
MEA9_t <− rep (1 , 46 ) #mor ta l i t y adjustment group 9
MEA10_t <− rep (1 , 46 )#mor ta l i t y adjustment group 10

for ( i in 2 : 46 )
{

MEA1_t [ i ] = B_t1 [ i ] /B_t1 [ i −1]
MEA2_t [ i ] = B_t2 [ i ] /B_t2 [ i −1]
MEA3_t [ i ] = B_t3 [ i ] /B_t3 [ i −1]
MEA4_t [ i ] = B_t4 [ i ] /B_t4 [ i −1]
MEA5_t [ i ] = B_t5 [ i ] /B_t5 [ i −1]
MEA6_t [ i ] = B_t6 [ i ] /B_t6 [ i −1]
MEA7_t [ i ] = B_t7 [ i ] /B_t7 [ i −1]
MEA8_t [ i ] = B_t8 [ i ] /B_t8 [ i −1]
MEA9_t [ i ] = B_t9 [ i ] /B_t9 [ i −1]
MEA10_t [ i ] = B_t10 [ i ] /B_t10 [ i −1]

}

MC1_t <− B_t1 − IndividualFund1_t/a_x
MC2_t <− B_t2 − IndividualFund2_t/a_x
MC3_t <− B_t3 − IndividualFund3_t/a_x
MC4_t <− B_t4 − IndividualFund4_t/a_x
MC5_t <− B_t5 − IndividualFund5_t/a_x
MC6_t <− B_t6 − IndividualFund6_t/a_x
MC7_t <− B_t7 − IndividualFund7_t/a_x
MC8_t <− B_t8 − IndividualFund8_t/a_x
MC9_t <− B_t9 − IndividualFund9_t/a_x
MC10_t <− B_t10 − IndividualFund10_t/a_x

Derivation of expected present discounted value (EPDV):
EPDV_GSA1 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t1 [ i +1]))

{break}
c = p_x [ i +1]∗B_t1 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA1 = EPDV_GSA1 + c}

EPDV_Annuity1 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t1 [ i +1]))

{break}
d = p_x [ i +1]∗B_01∗((1+R)^(− i ) )
EPDV_Annuity1 = EPDV_Annuity1 + d}

EPDV_GSA2 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t2 [ i +1]))

{break}
c = p_x [ i +1]∗B_t2 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA2 = EPDV_GSA2 + c}

EPDV_Annuity2 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t2 [ i +1]))

{break}
d = p_x [ i +1]∗B_02∗((1+R)^(− i ) )
EPDV_Annuity2 = EPDV_Annuity2 + d}
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EPDV_GSA3 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t3 [ i +1]))

{break}
c = p_x [ i +1]∗B_t3 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA3 = EPDV_GSA3 + c}

EPDV_Annuity3 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t3 [ i +1]))

{break}
d = p_x [ i +1]∗B_03∗((1+R)^(− i ) )
EPDV_Annuity3 = EPDV_Annuity3 + d}

EPDV_GSA4 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t4 [ i +1]))

{break}
c = p_x [ i +1]∗B_t4 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA4 = EPDV_GSA4 + c}

EPDV_Annuity4 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t4 [ i +1]))

{break}
d = p_x [ i +1]∗B_04∗((1+R)^(− i ) )
EPDV_Annuity4 = EPDV_Annuity4 + d}

EPDV_GSA5 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t5 [ i +1]))

{break}
c = p_x [ i +1]∗B_t5 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA5 = EPDV_GSA5 + c}

EPDV_Annuity5 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t5 [ i +1]))

{break}
d = p_x [ i +1]∗B_05∗((1+R)^(− i ) )
EPDV_Annuity5 = EPDV_Annuity5 + d}

EPDV_GSA6 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t6 [ i +1]))

{break}
c = p_x [ i +1]∗B_t6 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA6 = EPDV_GSA6 + c}

EPDV_Annuity6 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t6 [ i +1]))

{break}
d = p_x [ i +1]∗B_06∗((1+R)^(− i ) )
EPDV_Annuity6 = EPDV_Annuity6 + d}
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EPDV_GSA7 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t7 [ i +1]))

{break}
c = p_x [ i +1]∗B_t7 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA7 = EPDV_GSA7 + c}

EPDV_Annuity7 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t7 [ i +1]))

{break}
d = p_x [ i +1]∗B_07∗((1+R)^(− i ) )
EPDV_Annuity7 = EPDV_Annuity7 + d}

EPDV_GSA8 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t8 [ i +1]))

{break}
c = p_x [ i +1]∗B_t8 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA8 = EPDV_GSA8 + c}

EPDV_Annuity8 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t8 [ i +1]))

{break}
d = p_x [ i +1]∗B_08∗((1+R)^(− i ) )
EPDV_Annuity8 = EPDV_Annuity8 + d}

EPDV_GSA9 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t9 [ i +1]))

{break}
c = p_x [ i +1]∗B_t9 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA9 = EPDV_GSA9 + c}

EPDV_Annuity9 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t9 [ i +1]))

{break}
d = p_x [ i +1]∗B_09∗((1+R)^(− i ) )
EPDV_Annuity9 = EPDV_Annuity9 + d}

EPDV_GSA10 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t10 [ i +1]))

{break}
c = p_x [ i +1]∗B_t10 [ i +1]∗((1+R)^(− i ) )
EPDV_GSA10 = EPDV_GSA10 + c}

EPDV_Annuity10 = 0
for ( i in 0 : 45 )
{ i f ( i s .nan(B_t10 [ i +1]))

{break}
d = p_x [ i +1]∗B_10∗((1+R)^(− i ) )
EPDV_Annuity10 = EPDV_Annuity10 + d}
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Charts:
b e n e f i t s <− data . frame (cbind (c ( 0 : 4 4 ) ,B_t1 ,B_t2 , B_t3 , B_t4 , B_t5 ,

B_t6 , B_t7 , B_t8 , B_t9 , B_t10 ) ) [ 1 : 4 5 , ]
colnames ( b e n e f i t s ) <− c ( " time " , "Group1 " , "Group2 " , "Group3 " , "Group4 " ,

"Group5 " , "Group6 " , "Group7 " , "Group8 " , "Group9 " , "Group10 " )
ggp lot ( ) + theme_c l a s s i c ()+

geom_l i n e (data = bene f i t s , aes ( x = time , y = Group1 , col=’B0=100 ’ ) , lwd=1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group2 , col=’B0=200 ’ ) , lwd =1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group3 , col=’B0=300 ’ ) , lwd =1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group4 , col=’B0=400 ’ ) , lwd =1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group5 , col=’B0=500 ’ ) , lwd =1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group6 , col=’B0=600 ’ ) , lwd =1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group7 , col=’B0=700 ’ ) , lwd =1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group8 , col=’B0=800 ’ ) , lwd =1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group9 , col=’B0=900 ’ ) , lwd =1) +
geom_l i n e (data = bene f i t s , aes ( x = time , y = Group10 , col=’B0=1000 ’ ) , lwd =1) +
ylab ( ’ Bene f i t s ’ ) + xlab ( ’ time␣ t ’ ) + scale_c o l o r_manual (name = ’Group ’)+
g g t i t l e ( ’GSA␣ b en e f i t ’ ) + scale_c o l o r_brewer ( palette = " Paired " )

MEA <− data . frame (cbind (c ( 0 : 4 4 ) ,MEA1_t ,MEA2_t , MEA3_t ,
MEA4_t ,MEA5_t , MEA6_t ,MEA7_t ,MEA8_t ,MEA9_t ,MEA10_t ) ) [ 1 : 4 5 , ]

colnames (MEA) <− c ( " time " , "Group1 " , "Group2 " , "Group3 " , "Group4 " ,
"Group5 " , "Group6 " , "Group7 " , "Group8 " , "Group9 " , "Group10 " )

ggp lot ( ) + theme_c l a s s i c ()+
geom_l i n e (data = MEA, aes (x = time , y = Group1 , col=’B0=100 ’ ) , lwd=1) +
geom_l i n e (data = MEA, aes (x = time , y = Group2 , col=’B0=200 ’ ) , lwd =1) +
geom_l i n e (data = MEA, aes (x = time , y = Group3 , col=’B0=300 ’ ) , lwd =1) +
geom_l i n e (data = MEA, aes (x = time , y = Group4 , col=’B0=400 ’ ) , lwd =1) +
geom_l i n e (data = MEA, aes (x = time , y = Group5 , col=’B0=500 ’ ) , lwd =1) +
geom_l i n e (data = MEA, aes (x = time , y = Group6 , col=’B0=600 ’ ) , lwd =1) +
geom_l i n e (data = MEA, aes (x = time , y = Group7 , col=’B0=700 ’ ) , lwd =1) +
geom_l i n e (data = MEA, aes (x = time , y = Group8 , col=’B0=800 ’ ) , lwd =1) +
geom_l i n e (data = MEA, aes (x = time , y = Group9 , col=’B0=900 ’ ) , lwd =1) +
geom_l i n e (data = MEA, aes (x = time , y = Group10 , col=’B0=1000 ’ ) , lwd =1) +
ylab ( ’MEA’ ) + xlab ( ’ time␣ t ’ ) + scale_c o l o r_manual (name = ’Group ’)+
g g t i t l e ( ’ Morta l i ty ␣Adjustments ’ ) + scale_c o l o r_brewer ( palette = " Paired " )

MC <− data . frame (cbind (c ( 0 : 4 4 ) ,MC1_t ,MC2_t , MC3_t ,
MC4_t ,MC5_t , MC6_t , MC7_t ,MC8_t , MC9_t , MC10_t ) ) [ 2 : 4 5 , ]

colnames (MC) <−c ( " time " , "Group1 " , "Group2 " , "Group3 " , "Group4 " ,
"Group5 " , "Group6 " , "Group7 " , "Group8 " , "Group9 " , "Group10 " )

ggp lot ( ) + theme_c l a s s i c ()+
geom_l i n e (data = MC, aes ( x = time , y = Group1 , col=’B0=100 ’ ) , lwd=1) +
geom_l i n e (data = MC, aes ( x = time , y = Group2 , col=’B0=200 ’ ) , lwd =1) +
geom_l i n e (data = MC, aes ( x = time , y = Group3 , col=’B0=300 ’ ) , lwd =1) +
geom_l i n e (data = MC, aes ( x = time , y = Group4 , col=’B0=400 ’ ) , lwd =1) +
geom_l i n e (data = MC, aes ( x = time , y = Group5 , col=’B0=500 ’ ) , lwd =1) +
geom_l i n e (data = MC, aes ( x = time , y = Group6 , col=’B0=600 ’ ) , lwd =1) +
geom_l i n e (data = MC, aes ( x = time , y = Group7 , col=’B0=700 ’ ) , lwd =1) +
geom_l i n e (data = MC, aes ( x = time , y = Group8 , col=’B0=800 ’ ) , lwd =1) +
geom_l i n e (data = MC, aes ( x = time , y = Group9 , col=’B0=900 ’ ) , lwd =1) +
geom_l i n e (data = MC, aes ( x = time , y = Group10 , col=’B0=1000 ’ ) , lwd =1) +
ylab ( ’MC’ ) + xlab ( ’ time␣ t ’ ) + scale_c o l o r_manual (name = ’Group ’)+
g g t i t l e ( ’ Morta l i ty ␣Cred i t s ’ ) + scale_c o l o r_brewer ( palette = " Paired " )
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Code Varying contribution GSA plan - General
Trend
100 000 Simulations:
N=100000
Actual_l_x1 = matrix (0 ,N, 46) #ACTUAL number o f s u r v i v o r s group1
Actual_l_x2 = matrix (0 ,N, 46) #ACTUAL number o f s u r v i v o r s group2
Actual_l_x3 = matrix (0 ,N, 46) #ACTUAL number o f s u r v i v o r s group3
Actual_l_x4 = matrix (0 ,N, 46) #ACTUAL number o f s u r v i v o r s group4
Actual_l_x5 = matrix (0 ,N, 46)#ACTUAL number o f s u r v i v o r s group5
Actual_l_x6 = matrix (0 ,N, 46) #ACTUAL number o f s u r v i v o r s group6
Actual_l_x7 = matrix (0 ,N, 46) #ACTUAL number o f s u r v i v o r s group7
Actual_l_x8 = matrix (0 ,N, 46)#ACTUAL number o f s u r v i v o r s group8
Actual_l_x9 = matrix (0 ,N, 46) #ACTUAL number o f s u r v i v o r s group9
Actual_l_x10 = matrix (0 ,N, 46) #ACTUAL number o f s u r v i v o r s group10

Actual_l_x1 [ , 1 ] <− l_x1 , Actual_l_x2 [ , 1 ] <− l_x1 , Actual_l_x3 [ , 1 ] <− l_x1
Actual_l_x4 [ , 1 ] <− l_x1 , Actual_l_x5 [ , 1 ] <− l_x1 , Actual_l_x6 [ , 1 ] <− l_x1
Actual_l_x7 [ , 1 ] <− l_x1 , Actual_l_x8 [ , 1 ] <− l_x1 , Actual_l_x9 [ , 1 ] <− l_x1
Actual_l_x10 [ , 1 ] <− l_x1

for ( i in 1 :N){
for ( j in 2 : 46 )
{

Actual_l_x1 [ i , j ] = rbinom (1 , Actual_l_x1 [ i , j −1] , p_x [ j −1])
Actual_l_x2 [ i , j ] = rbinom (1 , Actual_l_x2 [ i , j −1] , p_x [ j −1])
Actual_l_x3 [ i , j ] = rbinom (1 , Actual_l_x3 [ i , j −1] , p_x [ j −1])
Actual_l_x4 [ i , j ] = rbinom (1 , Actual_l_x4 [ i , j −1] , p_x [ j −1])
Actual_l_x5 [ i , j ] = rbinom (1 , Actual_l_x5 [ i , j −1] , p_x [ j −1])
Actual_l_x6 [ i , j ] = rbinom (1 , Actual_l_x6 [ i , j −1] , p_x [ j −1])
Actual_l_x7 [ i , j ] = rbinom (1 , Actual_l_x7 [ i , j −1] , p_x [ j −1])
Actual_l_x8 [ i , j ] = rbinom (1 , Actual_l_x8 [ i , j −1] , p_x [ j −1])
Actual_l_x9 [ i , j ] = rbinom (1 , Actual_l_x9 [ i , j −1] , p_x [ j −1])
Actual_l_x10 [ i , j ] = rbinom (1 , Actual_l_x10 [ i , j −1] , p_x [ j −1])

}}

Fund1_t <− matrix (0 ,N, 4 6 ) , Fund2_t <− matrix (0 ,N, 4 6 ) , Fund3_t <− matrix (0 ,N, 4 6 ) ,
Fund4_t <− matrix (0 ,N, 4 6 ) , Fund5_t <− matrix (0 ,N, 4 6 ) , Fund6_t <− matrix (0 ,N, 4 6 ) ,
Fund7_t <− matrix (0 ,N, 4 6 ) , Fund8_t <− matrix (0 ,N, 4 6 ) , Fund9_t <− matrix (0 ,N, 4 6 ) ,
Fund10_t <− matrix (0 ,N, 4 6 ) , Fund_t <− matrix (0 ,N, 4 6 )

IndividualFund1_t <− matrix (0 ,N, 4 6 ) , IndividualFund2_t <− matrix (0 ,N, 4 6 )
IndividualFund3_t <− matrix (0 ,N, 4 6 ) , IndividualFund4_t <− matrix (0 ,N, 4 6 )
IndividualFund5_t <− matrix (0 ,N, 4 6 ) , IndividualFund6_t <− matrix (0 ,N, 4 6 )
IndividualFund7_t <− matrix (0 ,N, 4 6 ) , IndividualFund8_t <− matrix (0 ,N, 4 6 )
IndividualFund9_t <− matrix (0 ,N, 4 6 ) , IndividualFund10_t <− matrix (0 ,N, 4 6 )

Total Indiv idualFund1_t <− matrix (0 ,N, 4 5 ) , Total Indiv idualFund2_t <− matrix (0 ,N, 4 5 )
Total Indiv idualFund3_t <− matrix (0 ,N, 4 5 ) , Total Indiv idualFund4_t <− matrix (0 ,N, 4 5 )
Total Indiv idualFund5_t <− matrix (0 ,N, 4 5 ) , Total Indiv idualFund6_t <− matrix (0 ,N, 4 5 )
Total Indiv idualFund7_t <− matrix (0 ,N, 4 5 ) , Total Indiv idualFund8_t <− matrix (0 ,N, 4 5 )
Total Indiv idualFund9_t <− matrix (0 ,N, 4 5 ) , Total Indiv idualFund10_t <− matrix (0 ,N, 4 5 )
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B_t1 <− matrix (0 ,N, 4 6 ) , B_t2 <− matrix (0 ,N, 4 6 ) , B_t3 <− matrix (0 ,N, 4 6 ) ,
B_t4 <− matrix (0 ,N, 4 6 ) , B_t5 <− matrix (0 ,N, 4 6 ) , B_t6 <− matrix (0 ,N, 4 6 ) ,
B_t7 <− matrix (0 ,N, 4 6 ) , B_t8 <− matrix (0 ,N, 4 6 ) , B_t9 <− matrix (0 ,N, 4 6 ) ,
B_t10 <− matrix (0 ,N, 4 6 ) , B_t <− matrix (0 ,N, 4 6 )

Fund1_t [ , 1 ] = B_01 ∗ a_x [ 1 ] ∗ l_x1 , Fund2_t [ , 1 ] = B_02 ∗ a_x [ 1 ] ∗ l_x1
Fund3_t [ , 1 ] = B_03 ∗ a_x [ 1 ] ∗ l_x1 , Fund4_t [ , 1 ] = B_04 ∗ a_x [ 1 ] ∗ l_x1
Fund5_t [ , 1 ] = B_05 ∗ a_x [ 1 ] ∗ l_x1 , Fund6_t [ , 1 ] = B_06 ∗ a_x [ 1 ] ∗ l_x1
Fund7_t [ , 1 ] = B_07 ∗ a_x [ 1 ] ∗ l_x1 , Fund8_t [ , 1 ] = B_08 ∗ a_x [ 1 ] ∗ l_x1
Fund9_t [ , 1 ] = B_09 ∗ a_x [ 1 ] ∗ l_x1 , Fund10_t [ , 1 ] = B_10 ∗ a_x [ 1 ] ∗ l_x1
Fund_t [ , 1 ] = Fund1_t [ , 1 ] + Fund2_t [ , 1 ] + Fund3_t [ , 1 ] + Fund4_t [ , 1 ]
+Fund5_t [ , 1 ] +Fund6_t [ , 1 ] +Fund7_t [ , 1 ] +Fund8_t [ , 1 ] +Fund9_t [ , 1 ] +Fund10_t [ , 1 ]

IndividualFund1_t [ , 1 ] = B_01 ∗ a_x [ 1 ] , IndividualFund2_t [ , 1 ] = B_02 ∗ a_x [ 1 ]
IndividualFund3_t [ , 1 ] = B_03 ∗ a_x [ 1 ] , IndividualFund4_t [ , 1 ] = B_04 ∗ a_x [ 1 ]
IndividualFund5_t [ , 1 ] = B_05 ∗ a_x [ 1 ] , IndividualFund6_t [ , 1 ] = B_06 ∗ a_x [ 1 ]
IndividualFund7_t [ , 1 ] = B_07 ∗ a_x [ 1 ] , IndividualFund8_t [ , 1 ] = B_08 ∗ a_x [ 1 ]
IndividualFund9_t [ , 1 ] = B_09 ∗ a_x [ 1 ] , IndividualFund10_t [ , 1 ] = B_10 ∗ a_x [ 1 ]

B_t1 [ , 1 ] = B_01 , B_t2 [ , 1 ] = B_02 , B_t3 [ , 1 ] = B_03 , B_t4 [ , 1 ] = B_04 ,
B_t5 [ , 1 ] = B_05 , B_t6 [ , 1 ] = B_06 , B_t7 [ , 1 ] = B_07 , B_t8 [ , 1 ] = B_08 ,
B_t9 [ , 1 ] = B_09 , B_t10 [ , 1 ] = B_10

B_t [ , 1 ] = (B_01 + B_02 + B_03 + B_04 + B_05 + B_06
+ B_07 + B_08 + B_09 + B_10)∗ l_x1

denom <− matrix (0 ,N, 4 6 )

for ( i in 1 :N){
for ( j in 2 : 46 )
{

Fund_t [ i , j ] = (B_t [ i , j −1])∗ ( a_x [ j −1] − 1)∗(1+R)
B_t [ i , j ] = Fund_t [ i , j ] /a_x [ j ]

i f ( Actual_l_x1 [ i , j ] !=0)
{ Total Indiv idualFund1_t [ i , j −1] = B_t1 [ i , j −1]∗a_x [ j −1]
IndividualFund1_t [ i , j ] = ( Total Indiv idualFund1_t [ i , j −1] − B_t1 [ i , j −1] )∗(1+R)}
else
{ IndividualFund1_t [ i , j ] = 0}

i f ( Actual_l_x2 [ i , j ] !=0)
{ Total Indiv idualFund2_t [ i , j −1] = B_t2 [ i , j −1]∗a_x [ j −1]
IndividualFund2_t [ i , j ] = ( Total Indiv idualFund2_t [ i , j −1] − B_t2 [ i , j −1] )∗(1+R)}
else
{ IndividualFund2_t [ i , j ] = 0}

i f ( Actual_l_x3 [ i , j ] !=0)
{ Total Indiv idualFund3_t [ i , j −1] = B_t3 [ i , j −1]∗a_x [ j −1]
IndividualFund3_t [ i , j ] = ( Total Indiv idualFund3_t [ i , j −1] − B_t3 [ i , j −1] )∗(1+R)}
else
{ IndividualFund3_t [ i , j ] = 0}

i f ( Actual_l_x4 [ i , j ] !=0)
{ Total Indiv idualFund4_t [ i , j −1] = B_t4 [ i , j −1]∗a_x [ j −1]
IndividualFund4_t [ i , j ] = ( Total Indiv idualFund4_t [ i , j −1] − B_t4 [ i , j −1] )∗(1+R)}
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else
{ IndividualFund4_t [ i , j ] = 0}

i f ( Actual_l_x5 [ i , j ] !=0)
{ Total Indiv idualFund5_t [ i , j −1] = B_t5 [ i , j −1]∗a_x [ j −1]
IndividualFund5_t [ i , j ] = ( Total Indiv idualFund5_t [ i , j −1] − B_t5 [ i , j −1] )∗(1+R)}
else
{ IndividualFund5_t [ i , j ] = 0}

i f ( Actual_l_x6 [ i , j ] !=0)
{ Total Indiv idualFund6_t [ i , j −1] = B_t6 [ i , j −1]∗a_x [ j −1]
IndividualFund6_t [ i , j ] = ( Total Indiv idualFund6_t [ i , j −1] − B_t6 [ i , j −1] )∗(1+R)}
else
{ IndividualFund6_t [ i , j ] = 0}

i f ( Actual_l_x7 [ i , j ] !=0)
{ Total Indiv idualFund7_t [ i , j −1] = B_t7 [ i , j −1]∗a_x [ j −1]
IndividualFund7_t [ i , j ] = ( Total Indiv idualFund7_t [ i , j −1] − B_t7 [ i , j −1] )∗(1+R)}
else
{ IndividualFund7_t [ i , j ] = 0}

i f ( Actual_l_x8 [ i , j ] !=0)
{ Total Indiv idualFund8_t [ i , j −1] = B_t8 [ i , j −1]∗a_x [ j −1]
IndividualFund8_t [ i , j ] = ( Total Indiv idualFund8_t [ i , j −1] − B_t8 [ i , j −1] )∗(1+R)}
else
{ IndividualFund8_t [ i , j ] = 0}

i f ( Actual_l_x9 [ i , j ] !=0)
{ Total Indiv idualFund9_t [ i , j −1] = B_t9 [ i , j −1]∗a_x [ j −1]
IndividualFund9_t [ i , j ] = ( Total Indiv idualFund9_t [ i , j −1] − B_t9 [ i , j −1] )∗(1+R)}
else
{ IndividualFund9_t [ i , j ] = 0}

i f ( Actual_l_x10 [ i , j ] !=0)
{ TotalIndiv idualFund10_t [ i , j −1] = B_t10 [ i , j −1]∗a_x [ j −1]
IndividualFund10_t [ i , j ] = ( TotalIndiv idualFund10_t [ i , j −1] − B_t10 [ i , j −1] )∗(1+R)}
else
{ IndividualFund10_t [ i , j ] = 0}

denom [ i , j ] = IndividualFund1_t [ i , j ] ∗Actual_l_x1 [ i , j ] +
IndividualFund2_t [ i , j ] ∗Actual_l_x2 [ i , j ] +
IndividualFund3_t [ i , j ] ∗Actual_l_x3 [ i , j ] +
IndividualFund4_t [ i , j ] ∗Actual_l_x4 [ i , j ] +
IndividualFund5_t [ i , j ] ∗Actual_l_x5 [ i , j ] +
IndividualFund6_t [ i , j ] ∗Actual_l_x6 [ i , j ] +
IndividualFund7_t [ i , j ] ∗Actual_l_x7 [ i , j ] +
IndividualFund8_t [ i , j ] ∗Actual_l_x8 [ i , j ] +
IndividualFund9_t [ i , j ] ∗Actual_l_x9 [ i , j ] +
IndividualFund10_t [ i , j ] ∗Actual_l_x10 [ i , j ]

B_t1 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund1_t [ i , j ] ) / (denom [ i , j ] )
B_t2 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund2_t [ i , j ] ) / (denom [ i , j ] )
B_t3 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund3_t [ i , j ] ) / (denom [ i , j ] )
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B_t4 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund4_t [ i , j ] ) / (denom [ i , j ] )
B_t5 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund5_t [ i , j ] ) / (denom [ i , j ] )
B_t6 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund6_t [ i , j ] ) / (denom [ i , j ] )
B_t7 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund7_t [ i , j ] ) / (denom [ i , j ] )
B_t8 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund8_t [ i , j ] ) / (denom [ i , j ] )
B_t9 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund9_t [ i , j ] ) / (denom [ i , j ] )
B_t10 [ i , j ] = B_t [ i , j ] ∗ ( IndividualFund10_t [ i , j ] ) / (denom [ i , j ] )

}}

chart1 <− data . frame (B_t1 )
boxplot ( chart1 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart2 <− data . frame (B_t2 )
boxplot ( chart2 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart3 <− data . frame (B_t3 )
boxplot ( chart3 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart4 <− data . frame (B_t4 )
boxplot ( chart4 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart5 <− data . frame (B_t5 )
boxplot ( chart5 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart6 <− data . frame (B_t6 )
boxplot ( chart6 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart7 <− data . frame (B_t7 )
boxplot ( chart7 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart8 <− data . frame (B_t8 )
boxplot ( chart8 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart9 <− data . frame (B_t9 )
boxplot ( chart9 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)
chart10 <− data . frame (B_t10 )
boxplot ( chart10 [ , 1 : 4 6 ] , col = 5 , xlab =’ time␣ t ’ , y lab = ’ Bene f i t ’ ,

o u t l i n e = FALSE, main = ’ ’ , lwd =0.5)

EPDVs:
EPDV_GSA1 = rep (0 ,N)
for ( j in 1 :N){
for ( i in 0 : 45 )

{ i f ( i s .nan(B_t1 [ j , i +1]))
{break}
c = p_x [ i +1]∗B_t1 [ j , i +1]∗((1+R)^(− i ) )
EPDV_GSA1[ j ] = EPDV_GSA1[ j ] + c }}

EPDV_Annuity1 = 0 #benchmark annuity EPDV cond i t i ona l upon s u r v i v a l a t time t=44
for ( i in 0 : 45 )
{ d = p_x [ i +1]∗B_01∗((1+R)^(− i ) )

EPDV_Annuity1 = EPDV_Annuity1 + d}
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EPDV_GSA10 = rep (0 ,N)
for ( j in 1 :N){
for ( i in 0 : 45 )

{ i f ( i s .nan(B_t10 [ j , i +1]))
{break}
c = p_x [ i +1]∗B_t10 [ j , i +1]∗((1+R)^(− i ) )
EPDV_GSA10 [ j ] = EPDV_GSA10 [ j ] + c }}

EPDV_Annuity10 = 0 #benchmark annuity EPDV cond i t i ona l upon s u r v i v a l a t time t=44
for ( i in 0 : 45 )
{ d = p_x [ i +1]∗B_10∗((1+R)^(− i ) )

EPDV_Annuity10 = EPDV_Annuity10 + d}

boxplot (EPDV_GSA1[which( i s . f i n i t e (B_t1 [ , 4 5 ] ) ) ] , o u t l i n e = FALSE, col=" darkgreen " )
abline (h= EPDV_Annuity1 , col=11)
boxplot (EPDV_GSA10 [which( i s . f i n i t e (B_t1 [ , 4 5 ] ) ) ] , o u t l i n e = FALSE, col=" darkgreen " )
abline (h= EPDV_Annuity10 , col=11)
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