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Abstract

Longevity risk is a major threat to the industry of life insurance.
The more time passes the more it seems that the trend of longevity
continues undisturbed its growth. Policyholders live longer and receive
a higher income for longer, how to contain this risk so that the lenders’
probability of ruin is contained? The primary purpose of this work is
to present a unique model of hedging and pricing the longevity-linked
securities in accordance with the Solvency II framework in a continuous-
time setting. In doing so, is required a careful study of mortality over
time: looking at reality is always the best way to build a model. The
future mortality will be modelled through affine processes, which will be
functional and simplified in order to determine the price of the logevity-
linked securities. In this context, a second generation securitisation
approach is studied through derivatives contracts, analysing in the
italian context the pricing of these derivatives through the Cost of
Capital approach, analysing the consistency of this method with the
classical pricing methods: the Wang transform, Sharpe Ratio and the
Risk Neutral.
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1 Can Mortality be controlled?

1.1 Mortality history
Mortality has changed through the years, mostly in the last few decades.
From historical evidence it is possible to observe an increase of life duration,
which has tripled over the course of human history. Most of this increase has
occurred in the past 150 years. There are not evidence that these longevity
trends are slowing down. In the first half of the 18th century, the population
of Western Europe was approximately 100 million, before the industrial
and scientific revolutions produced many of their inventions in the field of
medicine. Between the 18th century and the common era, the massive increase
in population was the result of successive waves of crisis and expansion, it
was not a gradual process. We are able to make a general observation of this:
the huge fluctuations caused by epidemics, wars, and other disasters mark the
population growth over the centuries. Observing the average annual growth
rate between 1200 and 1700, it is only 1.3 per thousand. Assuming a death
rate of 35 per 1,000, the birth rate will be 4% higher (see Livi-Bacci [1]). Over
the centuries, the growth rate has varied greatly. In the five centuries before
the seventeenth century, even if growth in two of those centuries was negative,
the population of Europe almost doubled. In the eighteenth century, and
especially in the nineteenth century, restrictions on population growth were
lifted. The former has an annual growth rate of more than 4 per thousand,
the latter has an annual growth rate of more than 7 per thousand, and the
population has tripled (see Livi-Bacci [1]). The nineteenth period is rational
considered an exception to the demographic transition: reductions in fertility
and mortality, and changes in the life cycle of individuals and families. First,
in the early industrialized countries, life expectancy began to increase, while
in other parts of the world it was almost absent. Demographic analysis shows
that at the beginning of the 19th century, no country in the world had a life
span of more than 40 years. Over the next 150 years, certain parts of the
world have made great progress in health. In 1950 the life expentancy for
newborns was already 60 years old in Europe, North America and Japan (see
Roser et al. [2]). The decrease of infant mortality was crucial for the enlarge
of longevity, but the life expentancy, as we will see soon, increased at all ages.
These improvments were obviusly signs of progress; after millenia in terrible
condition, was the first time in human history that is achieved sustained gains
in health for entire populations.

1



Figure 1: Life Expectancy, 1770 to 2019, Source: Riley(2005), Clio In-
fra(2015), UN Population Division (2019)
•Note: Shown is period life expectancy at birth, the average number of years a newborn
would live if the pattern of mortality in the given year were to stay the same throughout
its life.

This graph illustrates that the health change started at various times
around the globe; worlwide the longevity rose from an average of 29 to 73
years in 2019. If we study the survival rate, shown for women in the Europe
map below we can easily see that the frequency that an infant reaches at least
the age of 65 is over 90%
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Figure 2: Share of women expected to survive to the age of 65, Europe, 2016.
Source: World Bank
•This measure shows the share newborns that would survive to the age of 65 if subject to
the current age specific mortality rates.

Often, is contended that the longevity across the world has rised only
because the infants mortality fall, but this is untrue, life duration has grown
at all ages. The following visualization shows the estimates projections of
the remaining expected life years for a 10-years-olds; the rise, shows that
the increasing of life expentancy isn’t only related to the declining of infant
mortality, but the mortality rate at higher ages declines as well.
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Figure 3: Life expectancy at age 10, 1750 to 2020. Source: United Nations
Population Division and Human Mortality Database 2015
•Shown is the number of remaining years a 10 year old is expected to live. From 2015
onwards the UN mid-variant projections are shown.

We can considering now the fact that, if it is true that the life expentancy
is increasing globally, is also true that there is a bound with the years lived
with disability. Healthy life expentancy has grown all over the world, due to
better healthcare and therapies, and this has increased the number of years,
on average, that people live with disability or chronic disease. This escalate
has been slower than the increase of healthy life expentancy (Roser et al.[2]).
The map below depicts the number of years a person can live a healthy life
and the number of years a person can live with a disability, in Italy.
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Figure 4: Average life expectancy of an individual born in a given year,
disaggregated into the expected number of healthy years, and the number lived
with disability or disease burden., Italy, 1990 to 2016. Source:IHME, Global
Burden of Disease

Talking about the longevity in Italy, we can observe that it increased
about 20 years between the 1950 to nowadays; looking at Istat’s data 2019
(something could change due Coronavirus disease in the next report) the life
expentancy is respectively, at birth, 83.2 years (female 85.4, male 81.1), at
65 years old, 21 years (female 22.6, male 19.4), at 85 years old, 6.7 years
(7.2 female, male 6). Meanwhile the average age at death is 81.4 (female
83.9, male 78.5) and the Lexis point 89 (female 90, male 87). Italy is one
of the most long-lived population across the world. However, the increase
in life expectancy, coupled with the decrease in the birth rate, which has
occurred over the last century and has led to a marked change in the structure
of the population. This will consist of an increasingly large proportion of
elderly people: the forecasts made by Eurostat until 2060 indicate that, in
the European Union’s populations, to a significant decrease of the so-called
"youth population"(people in an age range 0:14) and of the so-called "active
population" (people in an age range 15:64), there’ll be a large increase in the
number of citizens over 65. This leads to an increase over the years in the
demographic dependency ratio(65+), which is an index given by the ratio
between the "non-active" population and those of the "active population".
As a result, fewer and fewer workers will have to keep an increasing number
of people of pensionable age, arriving in 2060 in a situation where there
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will be almost one elderly person to support for each worker. According to
calculations made by Eurostat, in 2060 in Italy, this ratio will be 56.6%. In
particular, according to Istat’s forecasts, in Italy there will be a numerical
overtaking of the share of the population over 65 compared to the "active"
population in 2030 approximately and this gap will become greater and
greater in the following years. Therefore, the fact that a person who reaches
retirement age at 65 years, still has an average life expectancy of 21 years
ahead has negative consequences, as more funding will be needed for both
health care and pensions. This could have a negative impact on the budget
of pension funds, leading to financial unsustainability. And it is precisely
here that the longevity risk plays a huge relevance, that is, the risk that
these institutions will have to provide annuities to an increasing number of
people and for a period of time that might be higher than expected, because
members of the collective could live longer than originally estimate. In order
to be able to distribute the annuities granted in the future, the payers will
have to set aside, from year to year, the provisons on the premiums paid
by the members, which, however, might prove inadequate in relation to the
annuities to be paid, in case of estimation errors on the average future life.

1.2 Insurance and mortality
The previous section highlighted how the evolution of mortality in Italy
and in many developed countries has led to the formation of a phenomenon
never studied or encountered previously. This occurance takes the name of
longevity risk, that is the uknwon process originating from the uncertainty of
the evolution of mortality in old age. Specifically, longevity risk can be defined
at two different levels: individual and aggregate (see Stallard, [3]). On an
individual level, longevity risk refers to the eventuality that an insured person
survives longer than planned by the insurance company. At the aggregate
level, on the other hand, the longevity risk occurs when, in a portfolio of
insurance policies, is found an higher average survival rate than the assumed
one. In this sense, it could be said that there is the presence of longevity
risk when the theoretical expectations referring to mortality deviate from the
empirical evidence. ANIA (National Association of Insurance Companies)
defines it as "the risk of loss or unfavorable variation in the value of insurance
liabilities, deriving from changes in the level, trend or volatility of mortality
rates, where a drop in the mortality rate gives rise to an increase in the value
of insurance liabilities ". The peculiarity of life insurance companies derives
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from the inseparable link of business activities with the duration of human
life. This is evident in the second part of Article 1882 C.C., concerns life
insurance and expresses the fundamental role of the "event relating to human
life". The presence of this strong link with human life can also be extended
to pension funds, where the trend in mortality in old age takes on even more
importance. The insurer’s benefits therefore depend largely (or totally) on the
insured’s random life span. In this context, the probabilistic evaluations of
these random phenomena constitute a fundamental tool for the purpose of a
healthy and prudent use over time of the resources collected by the company.
In order to preserve sufficient profitability and capital strength, insurance
companies are forced to carefully select models to represent the demographic
dynamics of their policyholders, since the estimation of future exposures
depends on them. In addition to this purely corporate objective, European
insurance companies must comply with an equally stringent constraint in
order to adequately describe the phenomenon of mortality. In fact, with
reference to the principles issued by the International Accounting Standards
Board (IASB), all sources of risk to which a portfolio is exposed must be used
to calculate the fair value of the liabilities to be recognized in the financial
statements. In addition, as part of the prudential supervision system, the
new Solvency II solvency regime is based on an integrated risk approach
(Integrated Risk Analysis), which requires an assessment of liabilities at
market values (Market Consistent). In a insurance portoflio can be identified
two sources of risk:

• investment risk

• demographic risk

The financial risk is related to fluctuations in the return rates that occur on
the market and can cause a depreciation of the value of the investments made
by the insurance company. As is well known, its nature is a systematic risk
component. Demographic risk, on the other hand, is further divided into two
components: insurance risk and longevity risk. The first is a consequence of
accidental deviations of the number of deaths from the expected value and
its effects can be mitigated by the increase in the number of policies in the
portfolio (pooling risk). The second occurs when there are improvements in
the mortality trend, which can cause a systematic deviation of the number of
deaths from the expected value.
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Taking now into consideration the demographic dynamics, the mortality trend
observed in the last decades highlights three significant aspects:

• rectangularization

• expansion

• higher levels and strong dispersion of accidental deaths at young ages.

The rectangularization (particularly marked after 35 years of age) consists
in a greater concentration of the probability distribution around the Lexis
point, which in turn tends to coincide with the maximum life span ω. The
expansion consists instead in the random forward movement of the Lexis point,
which determines the uncertainty of the amplitude of the rectangularization
(following figure). These marked trends translate into an extension of life
expectancy, except for a strong volatility in mortality rates in young age due
to accidental causes.

Figure 5: Survival function trend

The problem of possible systematic deviations between the frequency of
death observed ex-post and the assumptions on the survival of the policy-
holders formulated ex-ante by the insurance companies (longevity risk), can
seriously compromise a prudent company management. Thus emerges the
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problem of addressing and managing this risk so that it does not have a strong
negative impact on the company’s balance and its prospective sustainability.
The main control tools currently available are projected mortality tables and
Longevity Linked Securities. With regard to the latter, it will be illustrated
in greater detail later in the discussion. The mortality trend can instead
be "anticipated" by the insurer through the use of projected tables. In a
deterministic approach, making assessments with a projected table can lead to
a reduction in risk compared to assessments made in the hypothesis of static
mortality. But this analysis does not take into account that the projection
itself is affected by randomness. It is therefore appropriate to evaluate a
portfolio in the hypothesis of uncertainty of the projection (stochastic ap-
proach), (see section 2): this is a model risk, called projection risk. Insurance
companies are obliged to accurately quantify the impact of randomness in
the mortality trend on the different coverage offered, in order to manage the
resulting risk. In fact, longevity risk affects life insurance with opposite trends
compared to death insurance. With regard to policies that pay benefits in
the event of life, the improvements in survival cause the increase in payments
that the company has to settle and, consequently, the reserve is undersized
at every moment of time. If, on the other hand, we consider the insurance
companies that pay sums to the beneficiaries in the event of the death of
the insured, the extension of life implies a containment of costs in favor of
the company. Furthermore, the overestimation of costs negatively affects the
business management activity. Due to this overestimation, the company sets
aside availability to cover future costs that it will not incur, by immobilizing
assets that could be used differently.

1.3 Longevity Risk: introduction and implications

For an annuity-paying institution managing the future mortality and so its
modelling is a priority. As stated before, mortality rates are affected by two
types of risk: idiosyncrastic risks, namely unexpected changes within a homo-
geneous risk class, and systematic changes involving the whole community
(see Bauer et al.[4]) the latter are the most dangerous for annuity-paying
institutions: in fact, in this case if the community lives more than assumed
in the assessments, mortality affects in the same direction for all members
making the longevity risk difficult to mitigate. On the contrary, the accidental
variations are mitigatible by increasing the collective: the variations around
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the average are absorbed for the Law of Large Numbers. Doing the same for
systematic mortality leads instead to a worsening condition. The longevity
risk is linked to the receipt of an annuity of an insurer who lives more than
calculated on the technical basis. Thinking about public welfare, the transfor-
mation coefficient is linked to future mortality, but it still remain exposed to
longevity risk; is impossible to have reliability for a long time. The longevity
risk is therefore the risk of paying an annuity for longer than estimated, the
issue is who will pay the rent for the extra years of survival. In the public
pension scheme reinsurance the State itself with more taxes; but for private
pension-paying institutions the situation is different. In England between
the years 1990 and 2000 they risked default. In Italy at the beginning there
was less attention because the market was not yet very developed, now that
companies begin to pay the first annuities are aware of it. Longevity risk is
hard to measure because, although using projection models, the evolution of
mortality remains uncertain. Uncertainty can be reduced, but it cannot be
undone: however sophisticated the model may be, it will never be able to
capture future mortality for certain. The exposure is to three different types
of risk:

• process risk, although it can be predicted the model well and estimate
the parameters well, then the individual does not always behave on
average, it will be observed a fluctuation around the expected value

• parameter risk, parameters are estimated on the observed reality, but
this is only one of the possible realizations of the random variable
mortality

• model risk, the model does not represent well the evolution of mortality,
there will always be deviation between observed and predicted mortality.

This risk, as stated in the previous subsection, involves annuity-paying isti-
tutions like insurance companies, social security institutions, which provide
basic social security benefits in capital or annuity (including reversibility),
closed and open pension funds providing benefits in capital or annuity. With
particular reference to :

Life Business
- In life case insurance, a higher survival rate than expected involves payments
by the insurance company to the beneficiaries or insured for a larger number
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of periods and, therefore, an increase in actuarial liabilities; in fact, the
company will be forced, to against this risk, to set aside higher reserves on
the premiums paid by the policy holder;
- In death case insurance, since the company will be required to pay a certain
amount to the beneficiaries in the event of the death of the insured person, a
longer life span of the member is on the one hand positive for the company as
it will obtain a reduction in the benefits it will have to provide, on the other
hand, an overestimation of costs may be a negative factor in the management
of the holding, since monetary amounts that could be used in other assets
are set aside.

Defined benefit pension plan
Longevity risk is already present in the accumulation phase because an unex-
pected extending of life expectations will lead to a greater loading because
the annuity is pre-established and may not be reduced to compensate a
longer duration. Moreover, the risk of longevity is not easily defined ax-ante,
because if the contributions paid and the returns realised are not sufficient to
ensure the predetermined annuity, the fund may require payments additional
overtime, which may weigh in whole or in part on the adherent or may be
financed by the fund. Is also hard to determine what is attributable to the
longevity risk, the investment risk or other risks.

Defined contribution plans
In the accumulation phase, the risk of longevity is usually borne by the
individual adherent, while it does not have an economic impact on the man-
ager. Infact the conversion coefficient of the amount in rent, usually, is not
established at the time of registration of the insured/member, but at the
beginning of the annuity. Any improvements in life expectancy will result in
a coefficient of conversion into a less favourable pension and therefore into
a lower pension rate. In doing so, however, there is a reputational risk for
social security institutions, if they change the conversion coefficient of the
amount in annuity when the member retires.

The Equitable Life Assurance Society (ELAS), the world’s oldest life
office, was forced to close to new business in December 2000, bringing the
potential implications of longevity risk to public attention. ELAS sold with-
profits pension annuities between 1957 and 1988, with guaranteed annuity
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rates set by reference to specific assumptions about interest rates and life
expectancy. These embedded options became extremely lucrative in the 1990s
as a result of a combination of declining interest rates and improved mortality,
and it was the increase in the value of these options that caused ELAS’s
financial difficulties. These could have been prevented if ELAS had secured
its vulnerability to both interest rate risk and longevity risk, but ELAS failed
to recognize the magnitude of its possible exposure for several years. The
inability of ELAS to do so reflects the Society’s poor interest in longevity risk
management.
The management of a pension scheme, in order to comply with the principle
adequacy, requires a prior assessment of the impact of the longevity risk on
future transformation coefficients. At the stage of retirement, there isn’t
usually a review of the benefits as a result of unexpected changes in life
expectancy, therefore, the longevity risk is borne by those who directly
provide the annuity (insurance companies, pension funds,...). To protect its
own solidity, an insurance company (or a pension fund) has different ways.
We will analyze these in the following subsection.

1.4 Managing Longevity Risk

The first strategy a paying institution could implement is to manage risk on
its own: to do this, are used mortality tables projected in such way as to
determine the actuarial values of the annuities to be paid in the future. Are
used projected mortality tables (in Italy A62 built by ANIA), and there is
a security loading that could be implicit in the technical basis, or explicit.
The loading is surely needed when the conversion coefficient is guaranteed.
However, the use of appropriate mortality tables (obtained through stochastic
projections) does not eliminate the risk of longevity, although it may help in
its management. To mitigate longevity risk, in an annuity portfolio, there are
different techniques that we can consider:

• Natural Hedging

• Capital Requirement

• Traditional Reinsurance

• Financial Reinsurance (securitization)

12



1.4.1 Natural Hedging

Firstly, when a company sells both life insurance and annuities, a hedge can
be created. Natural hedging is the practice of tying the prices of two lines of
products to the mortality (death rates) and longevity (survival rates) levels,
respectively, so that their opposing movements in payoffs will balance each
other. The idea is to cover "naturally" longevity with insurance objects that
are inversely related to life span, through an appropriate mix of life and death
case benefits. There are some advantages. Infact firstly is not required a
counterparty, then there are not transaction costs, and also it could be an
internal risk diversification tool. We can combine a death event with an
annuity payment. Observe that it is possibile only if the institutions offers
also death case policies, otherwise for implementing a natural hedging, the
institutions must give the longevity to an insurance company that offers also
death events. But note that in doing the natural hedging strategy there is a
great criticality: people who agree a death case policy have an age different
from whom is exposed to longevity risk, there are huge difficulties to reach a
satisfactory compensation; besides the death cover generally ends when the
person has a retirement age (65 years old). It is needed a lifetime death case,
but who subscribes this kind of policy has different features from who suffers
longevity risk.

1.4.2 In the Solvency II Directive

Solvency II is the directive, which has been under discussion for over ten years,
that updates the prudential regulation of European insurance companies. As
the banks also companies must maintain a cushion of additional resources to
guarantee their business. With Solvency II, which follows the same approach
already done in the banking sector (Basel III) and in US insurance regulations,
the cushions of protection asset are no longer calculated on a fixed basis, but
change to relation to the actual risks of the company (risk oriented system,
both technical and investment risk). The project developed is based on a
multi-level scheme defined Lamfalussy. The Directive reviews the prudential
supervision of the insurance sector, following a risk-based approach: the
company in its businesses will have to take into account all risks to which it
is exposed and the interrelationships between all of them, also taking into
account the risks on the asset side (total balance sheet approach), managing
these risks effectively and efficiently. Firms will eventually be able to deter-
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mine their capital requirement through the use of an internal model subject
to the approval of the Supervisory Authority.
In particular ex Article 75 (Valuation of assets and liabilities):
Member States shall ensure that, unless otherwise stated, insurance and
reinsurance undertakings value assets and liabilities as follows:

(a)assets shall be valued at the amount for which they could be exchanged
between knowledgeable willing parties in an arm’s length transaction;

(b)liabilities shall be valued at the amount for which they could be trans-
ferred, or settled, between knowledgeable willing parties in an arm’s length
transaction.

When valuing liabilities under point (b), no adjustment to take account
of the own credit standing of the insurance or reinsurance undertaking shall
be made.
Specifically ex Article 76 (General provisions):

1.Member States shall ensure that insurance and reinsurance undertak-
ings establish technical provisions with respect to all of their insurance and
reinsurance obligations towards policy holders and beneficiaries of insurance
or reinsurance contracts.

2.The value of technical provisions shall correspond to the current amount
insurance and reinsurance undertakings would have to pay if they were to
transfer their insurance and reinsurance obligations immediately to another
insurance or reinsurance undertaking.

3.The calculation of technical provisions shall make use of and be con-
sistent with information provided by the financial markets and generally
available data on underwriting risks (market consistency).

4.Technical provisions shall be calculated in a prudent, reliable and objec-
tive manner.
A huge relevance has furthermore Article 77 (Calculation of technical
provisions)

1. The value of technical provisions shall be equal to the sum of a best
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estimate and a risk margin.

2. The best estimate shall correspond to the probability-weighted average
of future cash-flows, taking account of the time value of money (expected
present value of future cash-flows), using the relevant risk-free interest rate
term structure. The calculation of the best estimate shall be based upon up-
to-date and credible information and realistic assumptions and be performed
using adequate, applicable and relevant actuarial and statistical methods.
The cash-flow projection used in the calculation of the best estimate shall
take account of all the cash in- and out-flows required to settle the insurance
and reinsurance obligations over the lifetime thereof. The best estimate
shall be calculated gross, without deduction of the amounts recoverable from
reinsurance contracts and special purpose vehicles.

3. The risk margin shall be such as to ensure that the value of the tech-
nical provisions is equivalent to the amount that insurance and reinsurance
undertakings would be expected to require in order to take over and meet
the insurance and reinsurance obligations.

4. Insurance and reinsurance undertakings shall value the best estimate
and the risk margin separately. However, where future cash flows associated
with insurance or reinsurance obligations can be replicated reliably using
financial instruments for which a reliable market value is observable, the
value of technical provisions associated with those future cash flows shall be
determined on the basis of the market value of those financial instruments.
In this case, separate calculations of the best estimate and the risk margin
shall not be required.

5. Where insurance and reinsurance undertakings value the best esti-
mate and the risk margin separately, the risk margin shall be calculated
by determining the cost of providing an amount of eligible own funds equal
to the Solvency Capital Requirement necessary to support the insurance
and reinsurance obligations over the lifetime thereof. The rate used in the
determination of the cost of providing that amount of eligible own funds
(Cost-of-Capital rate) shall be the same for all insurance and reinsurance
undertakings and shall be reviewed periodically. The Cost-of-Capital rate
used shall be equal to the additional rate, above the relevant risk-free interest
rate, that an insurance or reinsurance undertaking would incur holding an

15



amount of eligible own funds, equal to the Solvency Capital Requirement
necessary to support insurance and reinsurance obligations over the lifetime
of those obligations.
As stated in the incipit of this subsection, the regulator requires a locked
capital to cover the risk of unfavourable operating results that are not already
covered by technical provisions, ex Article 101 (Calculation of the Sol-
vency Capital Requirement):

1. ...

2. The Solvency Capital Requirement shall be calculated on the presump-
tion that the undertaking will pursue its business as a going concern.

3. The Solvency Capital Requirement shall be calibrated so as to ensure
that all quantifiable risks to which an insurance or reinsurance undertaking is
exposed are taken into account. It shall cover existing business, as well as
the new business expected to be written over the following 12 months. With
respect to existing business, it shall cover only unexpected losses. It shall
correspond to the Value-at-Risk of the basic own funds of an insurance or
reinsurance undertaking subject to a confidence level of 99.5% over a one-year
period.

4. The Solvency Capital Requirement shall cover at least the following
risks:
a) non-life underwriting risk;
b) life underwriting risk;
c) health underwriting risk;
d) market risk;
e) credit risk;
f) operational risk.
Operational risk as referred to in point (f) of the first subparagraph shall
include legal risks, and exclude risks arising from strategic decisions, as well
as reputation risks.

5. When calculating the Solvency Capital Requirement, insurance and
reinsurance undertakings shall take account of the effect of risk-mitigation
techniques, provided that credit risk and other risks arising from the use of
such techniques are properly reflected in the Solvency Capital Requirement.
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In this context the principal measures of risk are V aR% and TV aR% given by:

V aR% = min(x|P (X > x) = 1− %)
TV aR% = E[X|X > V aR%]

(1)

The Solvency II Directive takes % = 99.5% on a one year time horizon:

Figure 6: VaR and TVaR

The entire project is based on many different aspects, but as can be
seen, the longevity risk is mentioned in the first pillar relating to the capital
requirements of the risks considered "quantifiable". Solvency II proposes two
alternative ways to calculate capital measures: Standard Formula or Internal
Model. In the first case, a mathematical formula adaptable to all companies;
in the second case, each company will use its own internal model approved
by the supervisory authority. The objective of Solvency II is precisely to
encourage companies to develop internal models, in such a way as to have a
more adequate capital requirement that fully reflects the risks to which they
are exposed.
Regarding the capital amount for longevity is needed the Article 105.3
(Calculation of the Basic Solvency Capital Requirement) that states:

The life underwriting risk module shall reflect the risk arising from life
insurance obligations, in relation to the perils covered and the processes used
in the conduct of business. It shall be calculated, as a combination of the
capital requirements for at least the following sub-modules:
a) the risk of loss, or of adverse change in the value of insurance liabilities,
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resulting from changes in the level, trend, or volatility of mortality rates,
where an increase in the mortality rate leads to an increase in the value of
insurance liabilities (mortality risk);
b) the risk of loss, or of adverse change in the value of insurance liabilities,
resulting from changes in the level, trend, or volatility of mortality rates,
where a decrease in the mortality rate leads to an increase in the value of
insurance liabilities (longevity risk);
c) the risk of loss, or of adverse change in the value of insurance liabilities,
resulting from changes in the level, trend or volatility of disability, sickness
and morbidity rates (disability – morbidity risk);
d) the risk of loss, or of adverse change in the value of insurance liabilities,
resulting from changes in the level, trend, or volatility of the expenses incurred
in servicing insurance or reinsurance contracts (life-expense risk);
e) the risk of loss, or of adverse change in the value of insurance liabilities,
resulting from fluctuations in the level, trend, or volatility of the revision
rates applied to annuities, due to changes in the legal environment or in the
state of health of the person insured (revision risk);
f) the risk of loss, or of adverse change in the value of insurance liabilities,
resulting from changes in the level or volatility of the rates of policy lapses,
terminations, renewals and surrenders (lapse risk);
g) the risk of loss, or of adverse change in the value of insurance liabilities,
resulting from the significant uncertainty of pricing and provisioning assump-
tions related to extreme or irregular events (life-catastrophe risk).
The Solvency Capital Requirment for longevity risk is calculated as a variation
in the value of assets less liabilities due to a longevity shock. Is the difference
between mathematical reserve with shock V shock

t and best estimate V BE
t :

SCRt = ∆BOFt|longevityshock = V shock
t − V BE

t (2)

where BOF are the basic own funds, the shock is a 20% permanent reduction in
mortality rates ∀ x ages. It represent the amount of capital that a pension fund
must hold for absorbing the unexpected losses related to one-year longevity
risk at 99.5% confidence level. The capital that the institution sets aside,
however, has to be kept locked. The fund loses by not investing it, it would
be better to yield the risk into reinsurance, lowering the SCR.
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1.4.3 Reinsurance

Insurance companies may decide to transfer to third parties part of the risk
of their portfolio: in fact, it is possible that companies may not have the
instruments to refund policyholders who have been subject to particularly
unpredictable events, such as natural disasters and terrorist attacks. It is pre-
cisely here that the concept of reinsurance assumes a certain importance. It is
a tool used by insurance companies to insure themselves, through the payment
of a certain premium, and for this can also be called "insurance of insurance"
or "second-degree insurance". In this way the insurance company leaves a
substantial part of the risk it has assumed from its customers, transferring
it to the reinsurance company and is, therefore, able to take policies, which
would otherwise be financially unsustainable and would therefore be forced to
decline. As a result, the original policyholder will be subject to a lower risk
of default of the contractual counterparty and will have a higher probability
of receiving exactly what is due if the event of the contract occurs. As a
result, it can be said that this will encourage the future growth of insurance
companies, as, thanks to this instrument, they will be able to benefit from a
reduction in the capital requirements required by the supervisory authorities.
So institutions that provide pensions or annuities will move (at least partially)
the unacceptable longevity risk to other insurers or reinsurers. For example,
insurers may pay a premium to purchase a reinsurance contract; pension
funds may hedge their longevity risk by acquiring annuity products from
insurance.
Reinsurance contracts that address demographic risk are:

• surplus (S)

• excess of loss (XL)

• stop loss assets (SLA)

• stop loss cash flows (SLCF)
Surplus
It is a proportional reinsurance cover in which the reinsurer pays a
portion of the annuity each year. The fee is specific to each individual
contract, and aims to make the performance of the policies homoge-
neous.
- indicating with M the maximum amount that the transferor wishes to
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pay for each annuity, the reinsurer will pay the amount that exceeds M;
- reduces performance volatility and random fluctuations around the
expected value (pooling risk).

Figure 7: Reinsurance via Surplus, M=400, from Pitacco E., Denuit M.,
Haberman S., Olivieri A. (2009) “Modelling Longevity Dynamics for Pensions
and Annuity Business”. Oxford University Press

Excess of Loss
It is a contract in which the reinsurer pays the part of the annuity that
exceeds an expiration date "m" (tail risk). The full-life annuities of the
annuity provider are converted into temporary annuities, the reinsurer
takes charge of a deferred annuity.
- x0 +m must be sufficiently high (e.g. the Lexis point);
- the reinsurer bears the worst part of the risk: the uncertainty about
mortality is stronger in old age (longevity risk);
- strong risk margin on the reinsurance premium;
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Figure 8: Reinsurance via XL, from Pitacco E., Denuit M., Haberman S.,
Olivieri A. (2009) “Modelling Longevity Dynamics for Pensions and Annuity
Business”. Oxford University Press

Stop Loss on Assets
It is a portfolio contract, which aims to prevent the transferor’s insol-
vency caused by systematic deviations in mortality:
- the reinsurer’s coverage is based on the comparison between the port-
folio assets in a predetermined date (At), with the portfolio reserve
required to meet the insurer’s commitment at date (Vt). The reinsurer
pays if At < (1+r)Vt with 0 <r <1. Loss is defined as asset insufficiency.
- Typically defined on a reference period of short / medium duration:
- short period, emphasizes the effect of random deviations:
- medium period, generates a strong exposure to longevity risk for the
reinsurer and therefore very high reinsurance premiums.
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Figure 9: Reinsurance via Stop Loss on Assets, from Pitacco E., Denuit M.,
Haberman S., Olivieri A. (2009) “Modelling Longevity Dynamics for Pensions
and Annuity Business”. Oxford University Press

Stop Loss on Cash Flows
It is a portfolio contract, which aims to prevent the insolvency of the
transferor caused by systematic deviations of mortality:
- reinsurer coverage begins when random payments of annual benefits to
annuity recipients exceed a predetermined amount: L′t = E[Rt](1 + r)
where E[Rt] is the expected value of the portfolio payments of annuities
and r>0;
- an upper limit is set for the L′′t reinsurance contract
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Figure 10: Reinsurance via Stop Loss on Cash Flows, from Pitacco E., Denuit
M., Haberman S., Olivieri A. (2009) “Modelling Longevity Dynamics for
Pensions and Annuity Business”. Oxford University Press

Anyway note that an important condition for the protection against the risks
to which the first-tier insurer is subject is that the reinsurer has a diversified
portfolio, the more this will be verified, the more effective the coverage from
the exposure to the risk in question. This is the problem of the implement of
the traditional reinsurance for longevity risk, because also the reinsurance
company cannot diversified its portfolio. A reinsurance company has in its
portfolio policies that belong to insurances companies that work in different
countries, but the longevity risk affects all the countries (at least those where
work companies that offer annuities subject to longevity).
In the end, all of these methods have weaknesses in practice. Stricter reg-
ulatory capital requirements on mortality and longevity risk have limited
reinsurers’ appetite for taking the risk. Furthermore, many insurance providers
lack the capital needed to offer both life insurance and annuities in the case
of the natural hedging. The last method of mitigating longevity risk is to use
the lifemarket, which allows longevity-linked liabilities to be exchanged.
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1.4.4 Securitization

The current problems with state-run pay-as-you-go pension schemes in many
countries intensify the longevity risk: many governments’ implementation of
tax incentives for annuitization of private wealth and reductions in future
benefits from public pension schemes may lead to an increase in demand
for annuities (see Kling et al.[5]). Under Solvency II, insurance companies
must measure and assess longevity risks (see Levantesi and Menzietti [6]).
Therefore, the level of capital required for longevity is increasing (see EIOPA
[7]). Before, annuity providers could only transfer longevity to reinsurers that
could provide standardized offer or customized insurance, but this risk transfer
became more and more expensive, and involves a counterparty credit risk.
Therefore, it is necessary to look for other alternatives to transfer longevity
risks, especially securitization (see Cox et al.[8]; see Li et al.[9]). Securitization
is a prominent method of managing this risk, which involves isolating the cash
flows associated with longevity risk and repackaging them into cash flows
that can be exchanged in capital markets (see Cowley and Cummins [10]).
Several supporting instruments, such as so-called longevity or survivor bonds,
have been mentioned in academic literature, Blake and Borrows in 2001 were
the first to support a mortality(longevity)-linked securities. When insurance
firms issue annuities, they use the premiums received to purchase matching
assets, that is, assets whose cash payments fit the expected pattern of payouts
on the liabilities that they face as closely as possible. In the case of level an-
nuities, they mostly invest in fixed-income bonds. In the case of index-linked
annuities, they hold index-linked bonds; no insurance firm will be willing to
write index-linked annuities unless it could offset the resulting inflation risk
by purchasing an index-linked bond issued by, say, the government or a utility.
However, there is one risk for which there are no matching assets: longevity
(or mortality) risk. A easy solution to the issue of longevity risk would be for
the government to issue survivor (or life annuity) bonds, bonds whose future
coupon payments are determined by the percentage of the total population of
pension age (suggest, 65) on the issue date still present on the future coupon
payment dates. For a bond issued in 2020, the payoff in 2040 will be equal to
the proportion of 65-year-olds in the population who have lived to the age of
85. As a result, the coupon is directly proportional to the amount that an
insurance provider required to pay out as an annuity to the average person
with an average pension. Every year, a new tranche of bonds will be issued
on a unisex basis. The Government Actuary will decide the issue price. The
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bonds will be available for sale on the open market and could be resold. Large
occupational plans that face aggregate longevity risk will be natural buyers
of such bonds (see Burrows and Blake [11]). In the same way as governments
in a number of countries have assisted pension funds in insuring against
inflation by issuing index bonds, the issuing of survivor bonds will assist
mature pension funds in insuring against the risks associated with an aging
population. The reduction in annuity expense loadings may be important.
The authors do, however, point out that their idea is not new: survivor bonds
are nearly identical in form to the 1759 Geneva Tontine Bond (see Cooper
[12]; and Jennings and Trout [13]). However, the first attempt to issue a
longevity-linked security failed in 2004. Nonetheless, the general opinion
among practitioners appears to be that, though an advancement is yet to
come, "betting on the time of death is set", and many investment banks, such
as JPMorgan or Goldman Sachs, have established longevity risk trading desks.

Before looking deeper into these securities, it’s a good idea to think about
who may be involved in the markets for mortality-linked securities. There
are many stakeholders in these markets (see Cairns at al.; [14])

• Hedgers: Hedgers are a natural class of stakeholders that have a spe-
cific exposure to longevity risk and wish to mitigate the risk. Annuity
providers, for example, stand to lose if mortality improves faster than
expected, while life insurers stand to benefit, and vice versa. Because
of these offsetting exposures, annuity companies and life insurers will
hedge each other’s longevity risks. (If the annuity and life books are
part of the same life office, the annuity and life books have at least a
partial natural hedge.) Alternatively, entities with unfavorable exposure
to longevity risk can compensate other players to reduce their risk. A
life office, for example, can mitigate its longevity risk by reinsuring it
or transferring it to the capital markets.

• Government: The government may be involved in markets for mortality-
linked securities for a variety of reasons. It may wish to encourage
certain markets and assist financial institutions that are exposed to
longevity risk (for example, it may issue longevity bonds that can be
used as instruments to hedge longevity risk). Actions of this nature
have the potential to reduce the probability that major corporations

25



would be financially ruined by their pension systems, with the result
that society as a whole profits from increased economic stability. As
the "insurer of last resort," the government will be left holding the bag
if private-sector pension funds and insurance firms fail to meet their
obligations. Furthermore the government may be willing to reduce
its own longevity risk. The government is a major holder of this risk
in its own right, through the pay-as-you-go state pension scheme, its
obligations to provide health coverage for the elderly, and for a variety
of other reasons.

• Speculators and Arbitrageurs: Short-term investors who exchange
their views on the course of individual security price fluctuations can be
drawn to a market in longevity-linked securities. The active participation
of speculators is very beneficial to market liquidity and, in reality, is
required for the performance of traded futures and options markets.
Arbitrageurs aim to benefit from price discrepancies in similar securities.
Arbitrage requires well-established pricing relationships between the
relevant securities for it to be a profitable operation.

• General Investors: Capital market institutions, such as investment
banks or hedge funds, may be interested in gaining exposure to longevity
risk if projected returns are fair, since it has a low correlation with
traditional financial market risk factors.

Anyway, note that there are difficulty in establishing the new market: first,
the imbalance between existing exposures and the willingness of hedging
providers, second, mortality-linked securities must meet the different needs
of hedgers and investors (difficult to reconcile - the former require coverage
effectiveness, while the latter demand liquidity), and furthermore the absence
of a market price for longevity risk. Recently, some longevity derivatives have
appeared. These products are based on mortality/longevity rates and are
similar to products in financial markets (see Blake et al.[11]). The two main
securities related to longevity proposed in the literature are longevity bonds
(Blake and Burrows) and survival swaps (see Dowd et al.[15]). Longevity
swaps are considered better because have lower transaction costs, and can
be customized according to individual characteristic. Also, they do not need
to have a liquid market. Therefore, longevity swaps appear to be the most
relevant derivative to hedge longevity risks. As interest rate swaps, survival
swaps can be divided into a simpler set of derivatives: S-forwards. Blake and
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Burrows suggested using survivor bonds to move longevity risk to capital
markets, then several writers have concentrated on longevity derivatives. The
itemize sequence below lists some of the longevity-related items listed in the
literature:

• Longevity Bond - Coupons are calculated using the survivor index
(the percentage of the reference population that is still alive). (Blake
and Burrows[11], Dowd[15]).

• Longevity Swap - Consists of swapping a series of potential cash flows
corresponding to a given population’s realized survival rate (based on
the reference population who are still alive) in exchange for fixed survival
rates agreed upon at the contract’s outset. (Dowd[15], Dowd[16])

• Mortality Option - At maturity, the call holder receives a payout
equal to max(T q̂x −T qx; 0), and the pull holder receives a payout equal
to max(T qx −T q̂x; 0), where T q̂x is the fixed mortality rate and T qx is
the realized mortality rate. (Cairns et al. [17]).

• Survivor Option - The payoffs are similiar to the previous one, but
the mortality rate is replace by the survival rate (Dowd [15])

• q-forward - Is a contract where is trade an amount equal to the realized
mortality rate of a given population cohort (floating leg) in exchange
for a fixed survival rate agreed upon at the contract’s inception (fixed
rate payment), at a future date T, contract maturity. (Coughlan et al.
[18]).

• S-forward - similiar to the above q-forward, but here the realized
mortality rate is replace by the survival one (Life and Longevity Markets
Association[19])

These derivatives have attracted many researchers and practitioners who have
published many articles in this area, but due to pricing difficulties and the
fact that these products only eliminate longevity risks, they are not yet widely
traded in the financial market, can be built in theory, but their implementation
proves hard. In reality, there have only been a few longevity/mortality-linked
securities announced or launched in the capital market. Some of these items
are in the following table:
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Longevity Bonds The market has seen the issuance of two types of
longevity bonds: coupon-related bonds that pay
declining coupons based on a cohort survival index
(EIB/BNP bonds) and principal at risk longevity
bonds that pay coupons but whose principal is
determined by an index calculating the difference
between two mortality rates (Kortis/Swiss Re).

Mortality Bonds Inspired by Cat Bonds, bonds issued to cover insur-
ers and reinsurers from natural disasters. Investors
lose any or all of the return and even the nominal
value of the bond if the loss happens under pre-
specified conditions. In this way, insurers mitigate
the risk of a sudden rise in mortality by sharing
it with other investors. Mortality Bonds operate
in the same way: the bond’s principal amount is
related to a mortality rate, and if the mortality rate
reaches the predicted threshold, investors will lose
some or all of their investment. Swiss Re issued
the first mortality bonds (VITA1) in 2003, followed
by other related bonds (VITA2 and VITA3) (2004
and 2007)

Longevity Options The underlying of a call option is indexed to a
longevity commodity. In 2013, Deutsch Bank intro-
duced an out-of-the-money 10-year choice focused
on a 5-year cohort of men and women aged 55 to
79 (population of England, Wales, and the Nether-
lands). It is an over-the-counter (OTC) commodity
that allows holders to profit if the real survival
rates are higher than those of the underlying asset.

Longevity Swaps Longevity swaps can be classified into two types
based on whether they have a custom-made or uni-
form index-based cover. JP Morgan enters into a
personalized swap with Canada Life and a struc-
tured swap with Lucida in 2008.

Table 1: Longevity Products
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Unlike traditional financial products, these instruments were not suffi-
ciently appealing to investors for a variety of reasons, depending on the
form of coverage. For example, the generic solutions are based on visible
population indices that differs from those used by the insurer (i.e. basis risk).
Evidently, unlike specialist reinsurers, financial investors are not specialists
in insurance risks and, as a result, focus on publicly accessible indices to
prevent manipulation. As a result, these structured products leave the insurer
vulnerable to the basis risk, which can be very high. Personalised securities
mitigate this issue because the longevity risk is entirely covered; however, this
level of security is normally prohibitively costly. Furthermore, pricing may be
the primary cause these linked securities struggled to succeed. The longevity
market is still immature and incomplete, with an obvious lack of liquidity.
As a consequence, there is a shortage of information for trading purposes,
resulting in the absence of mark-to-market rates for longevity derivatives.
Various pricing methods have been introduced in the literature, the majority
of these strategies being inspired by traditional pricing methods used in the
financial industry, such as the risk-neutral, Sharpe, and Wang approaches.
Before investigating these pricing methods, is surely useful now to easy explain
how does a longevity securitization works:

We consider for example a bond with the following characteristics:

• Issued to hedge longevity of a portfolio of immediate annuites

• Has coupons proportional to survivors of a given cohort

• Guarantees the principal repayment

The annuity provider has the requirement to pay immediate annuity to the
given cohort of lx0 individuals with age x0 at time 0, name R the amount
of the individual annuity, so in t the annuity privider will pay the random
amount Rlx0+t; there is an exposure to the risk of systematic deviations
between lx0+t and l̂x0+t respectively actual and expected number of survivors
aged x+t at time t
The straight coupon bond gives a cash flow RCt ∀t, and a repay equals to
RF in T , with constant coupons, with amounts equal to RC(see Lin and
Cox [20])
Through a Special Purpose Company (SPC), coupons are splitted between
investors and the annuity provider in two financial instruments related on
realized mortality at each future time t ∀t, t = 1, 2, 3, ...T . So that we will
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have
RCt = R(Bt + Dt) (3)

where RBt is the benefits recived by the annuity provider, and RDt the
specular payments to investors, i.e.:

Bt =


C lx0+t − l̂x0+t > C

lx0+t − l̂x0+t 0 < lx0+t − l̂x0+t 6 C

0 lx0+t − l̂x0+t 6 0

(4)

Dt =


0 lx0+t − l̂x0+t > C

C − (lx0+t − l̂x0+t) 0 < lx0+t − l̂x0+t 6 C

C lx0+t − l̂x0+t 6 0

(5)

So Dt = C −Bt

Suppose now that SPC purchases, at price W , a straight coupons bond with
the characteristics described above; being P the premimium that an annuity
provider pays to SPC for the hedging of his longevity risk, and V the price
paid by investors to buy the longevity bond issued from SPC with coupons
RDt and face value RF . The price of the longevity bond is the expected
value of the future payoffs under a risk-adjusted probability measure, named
RA, is considered independence between demographic and financial risk:

W = RFv(0, T ) + RC
T∑
t=1

v(0, t) (6)

P = R
T∑
t=1
ERA[Bt]v(0, t) (7)

V = RFv(0, t) + R
T∑
t=1
ERA[Dt]v(0, t) (8)

v(0, t) risk-free discount factor

The situations described is the following:
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Figure 11: Longevity Bond cash flows scheme

In analogy to what stated above for the bond, is possible present the structure
of a Vanilla Survivor Swap:

• the annuity provider must pay immediate annuities to a cohort of lx
earners aged x in 0

• fixed annuity of amount equal to 1

• l̂x+t expected number of survivors aged x+t in t

• lx+t actual number of survivors aged x+t in t

• exposure to the risk of systematic deviations between lx+t and l̂x+t

• lx+t - l̂x+t: losses of the annuity provider ∀t

• named π as the fixed premium rate of the swap, set so that the value of
the swap is zero upon issue ⇒ market value of the fixed leg = market
value of the floating leg
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Figure 12: Cashflows survivor swap

The value of the vanilla survivor swap in t=0 for the fixed-rate payer is:

V(0, lx,t)− V(0, (1 + π)l̂x+t) (9)
Remembering the hypotesis of indipendence between mortality and
interes rate:

V(0, (1 + π)l̂x+t) = (1 + π)
T∑
t=1

l̂x+tv(0, t)

V(0, lx+t) =
T∑
t=1
ERA[lx+t]v(0, t)

(10)

Where the first of (10) is the expected value of the fixed leg under
the real world probability measure; the second of (10) is the expected
value of the floating leg under the risk-adjusted probability measure. Is
possible now to give the Premium π of the vanilla survivor Swap:

π =
∑T
t=1 ERA[lx+t]v(0, t)∑T

t=1 l̂x+tv(0, t)
(11)

The cashflows of a vanilla survivor swap could be represented as:
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Figure 13: Cashflows survivor swap

In the following table are listed some of the issued survivor swaps:

Date Hedger Term (years) Intermediary
Jan-08 Lucida 10 JPMorgan
Jul-08 Canada Life 40 JPMorgan
Feb-09 Abbey Life Run-off Deutsche Bank
Mar-09 Aviva 10 RBS
Jun-09 Babcock 50 Credit Suisse
Jul-09 Royal and Sun Alliance Run-off Goldman Sachs

Table 2: Some issued survivor swaps, from Biffis and Blake (2009) [21],
“Mortality-Linked Securities and Derivatives”

The coverage for the longevity risk could be standardized or customized,
in the following figure a resume:
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Figure 14: Standardized and Customized Survivor Swaps

The classical pricing
There are basically three approaches

• the Wang transform (Wang 2002 [22]);
the risk-adjusted probablities are given by a distortion operator

• the Sharpe ratio approach;
is assumed that investors ask, for a risk premium (Sharpe ratio) equal to
that required for the non-diversifiable risk of other financial instruments,
to assume the longevity risk

• risk neutral approach;
the same pricing principles used for the pricing of financial derivatives
apply to longevity-linked securities

Wang defines the following distorsion operator:

gλ(u) = Φ[Φ−1(u)− λ] (12)
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with 0<u<1 and λ is a parameter that reflect the market price of risk .
The real world probability distribution is skewed to produce risk-
adjusted expected values which can be discounted with the risk-free
structure.

tq̂
∗
x0 = Φ[Φ−1(tq̂x0 − λx0(t0)] (13)

with tq̂
∗
x0 is probability under the risk adjusted measure.

This approach is followed by Lin and Cox [20], Cox-Lin-Wang (2006)
[23], Denuit-Devolder-Goderniaux (2007) [24], and for italian data by
Levantesi-Menzietti-Torri (2010a, 2010c) [25]. Following the latter
approach, it could be used the market price of the annuities for the
estimation of λ:

amarketx0 (t0) =
∑
t>1

(1− Φ[Φ−1(tq̂x0 − λx0(t0)])v(0, t) (14)

where amarketx0 (t0) is the annuities market price. From (14) is possible to
give an explicit formulation of P and V :

P = R
T∑
t=1
E∗[Bt]v(0, t)

V = RFv(0, t) +R
T∑
t=1
E∗[Dt]v(0, t)

(15)

However, there are some critical elements as the lack of a secondary
market for annuities in Italy. To solve a hypothesis is made: the market
value of the annuities assumed equal to the market value calculated
using the most widely used technical bases (IPS55).

The Sharpe Ratio is affected by the same problem. It must be
converted the probability measure from a real-world measure to a risk-
adjusted one produced by the constant market price of risk. The Sharpe
ratio may potentially be modified using an adequate annuity quotation;
however, as stated before annuity market values of longevity-related
assets are insufficient.

For the Risk Neutral approach the main problem is the shortage of
longevity-linked securities traded on the market, so payments associated
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with mortality cannot be replicated, that leads to the inability to
estimate a single risk-adjusted probability measure. If the global market
is arbitrage-free, there is at least one risk-neutral measure Q that can
be used to calculate the fair price

The primary ambition of this study is to suggest a durability hedging
and pricing mechanism in accordance with the Solvency II directive (1.4.2)
in a stochastic continuous-time setting. In doing so are now presented some
actuarial tools in order to understand the key elements needed. In Section
2 will be studied and compared continuous-time processes to project future
mortality, and finally in Section 3 will be priced an S-forward with a new
method consistent with the Solvency II directive, and it will be compared
with the other three approaches listed above.

1.5 Basic elements of actuarial mathematics

The life expectancy of the insurer is the key element in our context, we will
therefore dedicate this subsection to the presentation of this random variable
(r.v.)

1.5.1 Life expentancy at birth

Consider a person aged x = 0 (at birth) and call T0 his random life duration,
calculated in years.
Be F0(t) the distribution function of T0 � F0(t) = Pr(T0 ≤ t)

Being true the following assesments:
- T0 determinations are positive real numbers
- the probability distribution of T0 is continuous and has a density function;
it takes values in (0, ω] with ω maximum age. So ∃ f0(t), non negative and
normalized � for t < 0⇒ f0(t) = 0, called density function � ∀t > 0 results
F0(t) =

∫ t
0 f0(u)du

The plot of the density function is called death curve. Is now introduceable
the survival process S(t) � S(t) = P (T0 > t) = 1− F0(t).

Knowing that for the distribution function:
F0(0) = 0; limt→+∞ F0(t) = 1,
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it will be for the survival function:
S(0) = 1; limt→+∞ S(t) = 0

Figure 15: The Survival Process,
realized in R with the data of HMD for Italy

The above chart shows a plausible trend for the survival process. It should
be noticed the initial decrement related to the infant mortality, while the
inflection point shows the strong mortality in old ages

1.5.2 The residual life span at age x

In general we can now consider a person aged x, and put Tx his random life
span. By definition is known that Tx = (T0 − x)|T0 > x. The probability
distribution of Tx is identified by
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Fx(t) = P (Tx 6 t) = P (T0 6 x+ t|T0 > x) =

= P (x < T0 6 x+ t)
P (T0 > x) = F0(x+ t)− F0(x)

1− F0(x) =

= S(x)− S(x+ t)
S(x) = 1− S(x+ t)

S(x) , t > 0

(16)

So that
fx(t) = −

d
dt
S(x+ t)
S(x) , t > 0 (17)

1.5.3 Actuarial Notation

In the actuarial mathematics, is prevalent the use of the survival and death
probability, stand respectively:

tqx = Fx(t) (18)

tpx = 1−t qx (19)
So that

tqx = 1− S(x+ t)
S(x) (20)

tpx = S(x+ t)
S(x) (21)

It can be immediately proved that:

tpx =τ px ·t−τ px+τ , 0 6 τ 6 t (22)
Is habit for x = 0, 1, 2, 3, ..., that:
1px = px,
1qx = qx,
and ∀ t integer from (22):

tpx = px · px+1 · ... · px+τ−1 (23)
From the sequence qx (or from px) it can be constructed the survival process
∀ x = 0, 1, 2, 3, ..., s.t. S(0) = 1, for (20):

S(x+ 1) = S(x)(1− qx) (24)
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1.5.4 Intensity of mortality

Consider, for x and ∆x positive and arbitrary, the following probability:

∆xqx = P (Tx 6 ∆x) = P (T0 6 x+ ∆x|T0 > x) =

= P (x < T0 6 x+ ∆x)
P (T0 > x) = F0(x+ ∆x)− F0(x)

1− F0(x) =

= f0∆x
S(x) + o(∆x)

(25)

where o(∆x) is a higer order infinitesimal to ∆x. Is put:

µ(x) = lim
∆x→0

∆xqx
∆x (26)

So that
µ(x) = f0(x)

S(x) (27)

The function µ(x) defined above is known as intensity of mortality. His
meaning is clear looking at (26) as we can write for ∆x ’small’:

∆xqx ≈ µ(x)∆x (28)

The death probability in (x, x+ ∆x) (for a person aged x) is so proportional
to the width ∆x of the interval, for a coefficient µ(x), related generally to the
age x. The (28) allows us to identify the dimension of µ(x), because known
that ∆xqx is a probability (scale free) and ∆x is a time, µ(x) has dimension
the reciprocal of time, an intensity. From (17) and (27), we have also:

µ(x) = −S
′(x)
S(x) (29)

i.e.
µ(x) = − d

dx
lnS(x) (30)
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Figure 16: The Intensity of Mortality,
realized in R with the data of HMD for Italy

The chart above represent a plausible trend for µ(x). µ(x) can be in-
terpreted in different ways. The (27) suggests µ(x) like density in x of the
r.v. T0, subject to T0 > x. Also (29) suggests that the first derivative S ′(x)
mesures the istantaneous speed of variation of the survival probability. A
speed of variation has on the mortality an impact as strong as less the survival
probability is (infact ∀ ages x, we study the "death risk" trough a mesure
compared to S(x), S′(x)

S(x) ). From (27) and (29) we can make explicit the
relationships µ(x) has with the others actuarial elements we have introduced
before:

fx(t) = −S
′(x+ t)
S(x) = S(x+ t)

S(x)
S ′(x+ t)
S(x+ t) =t pxµ(x+ t) (31)

S(x) = e−
∫ x

0 µ(t)dt (32)
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As limx→+∞ S(x) = 0, the intensity of mortality must prove the following
statement:

lim
x→+∞

∫ x

0
µ(t)dt = +∞ (33)

For actuarial models, as we will see soon, the intensity of mortality is ever-
increasing, so the (33) will be satisfied. Once found S(x), we’re able to
write other functions related to the probability description of the random life
duration. Is also interesting express these functions in terms of µ(x)

px = S(x+ 1)
S(x) = e−

∫ 1
0 µ(x+t)dt (34)

qx = 1− e−
∫ 1

0 µ(x+t)dt (35)
This work aims to pricing longevity-linked securities, to make this, a central
point is clearly linked to how to model future mortality. Will be developed in
this context an approach that will follow the modelling of µ(x) with affine
processes 1, as we shall see later in section 2. A first approach in this sense
is starting from the classic actuarial models for the intensity of mortality.
The function intensity of mortality must be modelled with logic biological
assuptions. The Gompertz model (1825) is based on the assumption that
µ(x) increases in an interval ∆x in proportion to ∆x and to the starting µ(x);
i.e:

∆µ(x) = βµ(x)∆x+ o(∆x), β > 0 (36)
then dividing by ∆x and for ∆x −→ 0+, you have

d

dx
µ(x) = βµ(x) (37)

therefore integrating:
µ(x) = αeβx, α > 0 (38)

A simple generalise of the Gompertz law above is the Makeham’s law (1860).
In this one is explicit the influction in the mortality af accidentals causes
(independents from aging), expressed with an adding costant γ

µ(x) = γ + αeβx, α, β > 0; γ > 0 (39)
1see in Appendix B
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Putting γ = 0 we have the Gompertz’s law, for β = 0 the Dormoy’s, with an
unrealistic costant intensity. From (32) we can obtain the following expression
of the survival process:

S(x) = ksxgc
x (40)

with s = e−γ, g = e−
α
β c = eβ, k = 1

g
.

Comparing the survival processes of Makeham and Gompertz with the
survival tables built with a lot of statistical observation, we can see that
both laws give a good fitting in wide age intervals. Wider with Makeham
(from 25-30 years to 95). In both laws however, the monotonic increasing
trend of the intensity, doesn’t reflect the mortality in infant age (but it is not
important for insurance applications), neither the increasing of the mortality
for accidental causes in 18-25 years old that emerge in empirical tables. The
Lazarus’s law (1867) generalised the Makeham’s, with an another exponential
adding term, type "negative Gompertz", infact this law is also called "double
exponential", his need is to reflect the mortality also in infant age.

µ(x) = α1e
−β1x + γ + α2e

β2x, α1, α2, β1, β2 > 0; γ > 0 (41)

Last, the Thiele’s law (1867), that reflects also the trend of mortality in the
young age:

µ(x) = α1e
−β1x + α3e

−0.5β3(x−γ)2
+ α2e

β2x,

α1, α2, β1, β2 > 0; γ, α3, β3 > 0
(42)

This law recognize in the first term the infant mortality (like Lazarus), the
second terms (gaussian trend), is related to accidental mortality, the third
(Gompertz type) explain the elderly mortality. Is interesting observing that
this law in three terms has been proposed in 1980 by Helingman-Pollard, that
has the same structure and the same purpose, but it is constructed for the
evolution of the "Odds"

qx

px
= A(x+B)C +De−E(lnx−lnF )2 +GHx (43)

1.5.5 Aggravated Risk

A natural consequence of the thread we are following, is to wonder if the
modelling of future mortality cannot be adequate ex-ante, taking into account
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possible future variations in the trend of the intensity of mortality. In the
actuarial field, an approach often used to express a "personalization" of the
survival probability valuation, consist in the use of affordable models aimed to
distort the mortality from the one of the table or related to a "standard" inten-
sity. In this way is possible to express aggravation or reduction of mortality.
In the life insurance business, the outcome of the medical examination and
the statements made by the person at the time of entry into insurance may
reveal aggravations due to the health conditions or the particular professional
activity of the person. Such aggravations can be quantified through the
models we will now present, starting from the application of the same to
a generic function of intensity of mortality. The most commonly adopted
assumptions on aggravation of mortality, for an insurer aged x at the entry are
followed described, note that we use the common actuarial application that
refears to an aggravation: the longevity is a reduction, but the construction
remains the same, and we adopt this notation. We will indicate µ like the
standard intensity of mortality, and µ() like the aggravated one. With η()

we denote the aggravation function, i.e. the difference between the standard
and the aggravated intensity of mortality (see Pitacco [26]). Is it natural to
assume that between the two intensities, there is ∀x and t>0 a linear relation
such that:

µ()(x, t) = (1 + γ)µ(x, t) + δµ(x) (44)
Note that for δ = 0 we obtain the moltiplicative model that we can indicate
as µ(m):

µ(m)(x, t) = (1 + γ)µ(x, t) (45)
i.e.

η(m)(t) = γµ(x, t) (46)
The aggravation results costant, so at the increasing of the "standard" µ
increase the aggravation. In the same way we can obtain the additive model
with γ = 0:

µ(a)(x, t) = µ(x, t) + δµ(x) (47)
i.e.

η(a)(t) = δµ(x, t) (48)
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2 Old and new methods for managing future
modelling

2.1 How precise can we be?
Companies are constantly seeking to address the issue and implement new
ideas to cover longevity risk, particularly with the Solvency II Directive. The
first task is to properly model the evolution of longevity in order to make
precise predictions for the future. The regulator needs the incorporation of
mortality risk analysis into stochastic valuation models, and we know from
the literature that stochastic models should be more reliably to quantify
mortality (see Cairns et al. [27]), provided that such models are the better
way to capture the complexity implicit in the problem. Researchers have
suggested a number of stochastic mortality models. The discrete time model
developed by Lee and Carter [28] is the most commonly used mathematical
model for mortality in the current literature (time series technique). Milevsky
and Promislow [29] were the first to suggest a stochastic force of mortality
model, which is based on the use of continuous-time stochastic processes for
explaining the force of mortality. And since, many other stochastic models
based on the comparison of mortality and interest rates have been suggested
(Dahl[30], Biffis [31], Denuit and Devolder [32], Luciano and Vigna [33],
Schrager [34], Zeddouk [35]). Some of the proposed models are based on the
natural analogy between mortality intensities and interest rates (or default
rates). The survival function for a person can be given in a closed form by
using affine processes for intensity of mortality, which is incredibly helpful for
pricing mortality/longevity-linked securities.

2.1.1 Discrete time models

Initiatives in research and development have increasingly concentrated on
stochastic mortality models in order to help forecast longevity risk. We will
investigate now about discrete time models, based on extrapolative methods.
Two families of models well known in the literature and most used in actuarial
evaluations, are the Lee-Carter’s and extensions and the Cairns-Blake-Dowd’s
and extensions. The Lee-Carter model was the first one to consider increased
life expectancy patterns in age mortality dynamics, and it has been used for
stochastic projections of the United States’ Social Security system as well as
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other elements of the United States’ federal budget.
Lee and Carter’s purpose is to describe the age-period surface of log-mortality
rates in terms of vectors α and β along the age dimension and k along the time
dimension, in particular α describes the behavior of mortality with varying
age, β describes for each age how mortality reacts to the variation of k, that is
the index of change in mortality over time, plus an error term εx,t, identically
distributed independent errors with standardized normal distribution N(0, σ2

ε )

ln(mx,t) = αx + βxkt + εx,t (49)
The parameterization can be done with the constraints adopted by the autors∑
t kt = 0 and ∑

x βx = 1, that immediately leads us to conclude that the
parameter αx is the average over time of the age profile. The estimated
parameters k are then modelled and projected as a stochastic time series using
ARIMA models.
The Lee-Carter model implicitly assumes that random errors εx,t are ho-
moschedastic (same variance with respect to age), unrealistic assumptions
for high ages, where there is a increased variability of mortality due to
the small number of deaths. The solution was proposed by Brouhns et
al. (2002)[36]: central mortality rates modeled using the Lee-Carter model:
ln(mx,t) = αx + βxkt, with deaths that follow a Poisson distribution: Dx(t) ∼
Poisson(Ex(t)mx(t)). The estimation of Lee-Carter parameters is computed
as follow:

• Definition of an objective function to minimize (Least Squares):

OLS(α, β, k) =
xm∑
x=x1

tn∑
t=t1

(lnm̂x,t − αx − βxkt)2 (50)

with m̂x,t observed rates

• Singular value decomposition:

∂

∂αx
OLS = 0 (51)

i.e.
tn∑
t=t1

lnm̂x,t = (tn − t1 + 1)αx + βx
tn∑
t=t1

kt (52)
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that s.t. ∑
t kt = 0 we obtain

α̂x = 1
(tn − t1 + 1)

tn∑
t=t1

lnm̂x,t (53)

• Parameters β and k are obtained by the SVD of the first term of the
matrix lnm̂x,t − α̂x = Z, β and k minimize the following:

OLS(β, k) =
xm∑
x=x1

tn∑
t=t1

(zxt − βxkt)2 (54)

Is needed to find the eigenvectors and eigenvalues of the matrix Z defined
as previous.

• Lastly the k parameters are calibrated on the observed death ditribution
by age

The Lee-Carter model requires constraints on β and k for the calibration,
otherwise we will have problems of identification of parameters, furthermore
the β parameter may be negative for some ages, indicating that mortality for
those ages tends to increase while decreasing at different ages.

Empirical analysis of mortality data suggest that the natural logarithm of
odds, ln qx(t)

px(t) takes a linear form with respect to age x over a time period of t
years. Cairns et al.[37] proposed the following model with two time terms:

ln
qx(t)
px(t)

= k
[1]
t + k

[2]
t x (55)

i.e.

qx(t) = exp(k[1]
t + k

[2]
t x)

1 + exp(k[1]
t + k

[2]
t x)

(56)

sometimes x is replaced by x−x. The log-odds could be written as logitqx(t).
k

[1]
t and k[2]

t are two stochastic processes that form a bivariate time series and
govern the projection of mortality rates. The Cairns-Blake-Dowd model has
not parameter identification problems, does not requires constraits. Generally
k

[1]
t decreases in time like the Lee-Carter’s, showing how the mortality rates

decrease in time for all ages x. If during the data observation period mortality
increases are higher at youth age than at old age, then k[2]

t increases over time.
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Compared to the Lee-Carter model, the Cairns-Blake-Dowd model shows
changes in mortality rates that are not fully age-related. The estimation of
Cairn-Blake-Dowd parameters is computed as follow:

• Are used Least Squares, with the following regression model:

ln
q̂x(t)
p̂x(t)

= k
[1]
t + k

[2]
t x+ εx(t) (57)

with error term εx,t, identically distributed independent errors with
standardized normal distribution N(0, σ2

ε )

• Definition of an objective function to minimize that gives the estimation
of the time parameters:

Ot(k) =
xm∑
x=x1

(ln q̂x(t)
p̂x(t)

− k[1]
t − k

[2]
t x)2 (58)

Despite the fact that data are generally presented at discrete periods (yearly),
other models have taken into consideration the evolution of death rates
over time. With the requirements of Solvency II for assessing mortality
risk, insurance companies have become particularly active in continuous-time
stochastic mortality models. and a vast array of continuous-time stochastic
models have been studied by several authors.

2.1.2 Continuous time models, mean reverting or not?

Our approach concentrates on mortality and measuring individuals’ survival
functions using one-factor short-rate models, which are utilized in finance to
explain variations in interest rate term structure. Milevsky used tools and
techniques established in interest rate analysis to model the force of mortality,
leveraging analogies between mortality and interest rate dynamics. Non-mean
reversion models, according to the research, are more suited for mortality
prediction than mean reversion models with a defined long-term endpoint. We
investigate in this subsection the effect of adding a time-dependent long-term
mean reversion level to mean-reverting systems. The model’s eventual mean-
reverting feature is critical in this setting. The question of mean reversion
models is motivated by the parallel between interest rates and the force
of mortality models. The mean reversion idea is simple and incorporates
long-term convergence to an equilibrium level with random noise. Luciano
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and Vigna [33] argue that non-mean-reverting affine processes are superior
at simulating the force of mortality, based these results on fixed-target re-
version models. This comparison is revisited by Zeddouk [35] by evaluating
both fixed-target mean-reverting models and moving-target mean-reverting
models. Predictably, a fixed-time endpoint is problematic for depicting the
development of time on mortality intensity, which rises with age. Examin-
ing a mean-reverting model with a rising target, particularly one with an
exponential target compatible with the traditional Gompertz model (38), is
indeed more interesting. In this subsection we model the force of mortality
µx(t) (26) as a continuous stochastic process:

Given (Ω,F ,P) and the filtration Ft, the process µx(t, ω) can be defined,
with ω ∈ (Ω,F ,P). Defined as previous µx(t, ω), from (30) we know that:

S(x, t, T, ω) = e−
∫ T
t
µx(u,ω)du (59)

So that in t the survival probability is computed as the expected survival
process conditioned to the information Ft:

T−tpx+t = EP[S(x, t, T, ω)|Ft] (60)

For Luciano and Vigna [33], continuous mean reversion models are unsuitable
for describing individual mortality; consequently, non-mean reversion models
perform better. Therefore, we will consider three models, one non-mean-
reverting, one mean-reverting with fixed target (Vasicek), one mean-reverting
with a modified moving target (Hull-White). The significance of using affine
models to describe µx(t) is the efficiency with which an explicit formula for
the survival probability (60) can be found. As a result, for affine processes
under technical constraints (see Duffie et al.[38]), the classical stochastic
process characteristics enable us to write:

T−tpx+t = eA(t,T )−B(t,T )µx(t) (61)

where A(t, T ) and B(t, T ) are deterministic functions and solutions of the
Riccati equation that may be found numerically and, in certain instances,
analytically (Duffie et al.[39]).
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Non-mean-reverting model
Is given the following Stochastic Differential Equation (SDE) 2 for the intensity
of mortality:

dµx(t) = αµx(t)dt+ σdZt (62)
α > 0, σ > 0 and Zt standard Brownian motion (Wiener Process)3. Because
the model is Gaussian, we can determine the term of the survival probability
by analyzing its distribution. We may alternatively employ the affine structure,
which yields the following system of ordinary differential equations for A(t, T )
and B(t, T ) (see Luciano and Vigna, 2015 [40]).

dA(t,T )
dt

= 1
2σ

2B(t, T )2

dB(t,T )
dt

= αB(t, T )− 1
A(T, T ) = B(T, T ) = 0

(63)

When resolving the system (63), we discover:A(t, T ) = σ2(T−t)
2α2 + σ2

4α3 e
2α(T−t) − σ2

α3 e
α(T−t) + 3σ2

4α3

B(t, T ) = 1
α

(1− eα(T−t))
(64)

The solution of the Stochastic Differential Equation (62) is:

µx(t) = µx(u)eα(t−u) + σ
∫ t

u
eα(t−s)dZs (65)

∀ u,t � (06u6t6T).
The intensity of mortality has positive probability of being negative:

P (µx(t) < 0|Fu) = φ(−µx(u)eα(t−u)

σ
√

e2α(t−u)−1
2α

) (66)

Where φ is the distribution function of a standard normal r.v.

2see Appendix A
3see Appendix A
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Mean-reverting model
We decide to study in this section the classical Vasicek [41] model, retracing the
Luciano and Vigna’s work and the Zeddouk’s. With Vasicek (1977) is assumed
that the intensity of mortality under P is described by an Ornstein-Uhlenbeck
process:

dµx(t) = α(γ − µx(t))dt+ σdZt (67)
γ > 0, α > 0, σ > 0, Zt the Wiener process. The drift term shows a mean
reversion to γ, with speed α. Integrating the equation (67) ∀ u 6 t:

µx(t) = µx(u)eα(t−u) + γ(1− e−α(t−u)) + σ
∫ t

u
eα(t−s)dZs (68)

The probability distribution of µx(t) in s with s>t is a Normal r.v. with mean
and variance under the probability measure P:

EPt [µx(s)] = γ + (µx(t)− γ)e−α(s−t) (69)

we can easily see that:

for

s −→ t ⇒ E[µx(s)] −→ µx(t)
s −→∞ ⇒ E[µx(s)] −→ γ

(70)

VarPt [µx(s)] = σ2

2α(1− e−2α(s−t)) (71)

for

s −→ t ⇒ Var[µx(s)] −→ 0
s −→∞ ⇒ Var[µx(s)] −→ σ2

2α
(72)

Where from s −→∞ we see that the variance increases proportionally at the
dispersion term (σ multiply the Brownian), and decreases proportionally at
α that drives at the convergence in mean.
The Vasicek model is an affine model so we can write analitically the survival
probability as:

T−tpx+t = eA(t,T )−B(t,T )µx(t) (73)
where A(t, T ) and B(t, T ) are given from:A(t, T ) = exp[(γ − σ2

2α2 )(B(t, T )− T + t)− σ2

4αB(t, T )2]
B(t, T ) = 1

α
(1− e−α(T−t))

(74)
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Luciano and Vigna in their "Non mean reverting affine processes for stochastic
mortality", show how the property of mean reversion is insuitable for the
modelling of the force of mortality, comparing the two models we presented
above. Infact in this work the non-mean reverting model overperform the
Vasicek. Based on this work the solution may be reject the mean reverting
property. Zeddouk in her "Mean reversion in stochastic mortality: why and
how?" added this lack of performing in the fixed target γ, in fact the intensity
of mortality, unlinke the interest rate models, has a growing trend with age
and also with time in (67). So as a result, appears necessary to re-evaluate
the performance of the mean-reverting models with an increasing target. In
this context, a natural candidate is to employ an exponential form as the
rising target, as in the classical Gompertz model (38).

Mean-reverting moving target model
For the moving target category we analyze the Hull and White model
(1990)[42], a time-dependent model, extension of the Vasicek model, the-
orically needed for an exact fit to the currently-observed yield curve that
led Hull and White to introduce a time-varying parameter, corrisponding to
the Vasicek’s γ, chose as a deterministic funcion of time ϑ(t). This model
implies a Gaussian distribution for the process, and the survival probability
is analytically determinable.

dµx(t) = (ϑ(t)− αµx(t))dt+ σdZt (75)

α > 0, σ > 0, Zt the Wiener process and ϑ(t) a deterministic function,
modelled with the Gompertz’s law (38), i.e.:

ϑ(t) = κeβt (76)

The Hull and White model is in this context as follows:

dµx(t) = α(κ
α
eβt − µx(t))dt+ σdZt (77)

If we consider κ
α
as the starting point µx(0) the model could be written as:

dµx(t) = α(µx(0)eβt − µx(t))dt+ σdZt (78)

The Hull and White is Gaussian, the survival probability can be found in
closed form. Integrating the equation (77) ∀ u 6 t:

µx(t) = µx(u)e−α(t−u) + κ

α + β
(eβt − eβu−α(t−u)) + σe−αt

∫ t

u
eαsdZs (79)
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The probability distribution of µx(t) in s is a Normal r.v. with mean and
variance under the probability measure P:E

P[µx(t)|Fs] = (µx(s)e−α(t−s) + κ
α+β (eβt − eβs−α(t−s))

VarP[µx(t)|Fs] = σ2

2α(1− e−2α(t−s))
(80)

Like the Ornestein-Uhlenbeck process, ∀t the force of mortality µx(t) can be
negative with a probability given by:

φ(−
(µx(s)e−α(t−s) + κ

α+β (eβt − eβs−α(t−s))√
σ2

2α(1− e−2α(t−s))
(81)

Furthermore with the boundary condition A(T, T ) = B(T, T ) = 0 we can
solve the system of ordinary differential equations:

dA(t,T )
dt

= B(t, T )ϑ(t)− 1
2σ

2B(t, T )2

dB(t,T )
dt

= αB(t, T )− 1
(82)

i.e. 
A(t, T ) = κ

α
[e−αT e(β+α)T−e(β+α)t

β+α − eβT−eβt
β

]
− σ2

2α2 [ 1
α

(1− e−α(T−t))− T + t]− σ2

2α3 (1− e−α(T−t))2

B(t, T ) = 1
α

(1− e−α(T−t))
(83)

2.2 Models Comparison
In this subsection, we use statistical strategies to assess the efficiency of the
mentioned models in predicting mortality. The models are calibrated using
past and projected mortality data. Following that, we compare the mortality
trends for the various models. Lastly, we employ the models to forecast
mortality.

2.2.1 Calibration

We calibrate the models to a few cohorts of the Italian population and
evaluate their ability to forecast mortality using various statistical techniques.
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In particular we consider three different cohorts of individuals, born in 1900,
1915 and 1955; with started point at age x0 = 50, using historical data
from Human Mortality Database for the cohorts of 1900 and 1915, and the
projected table built by ANIA for the generation of 1955. We consider unisex
annual death rates.
Be p1, p2, ..., pn the survival probability for a year, the probability that a
member aged x0, arrives at age x0 + t is:

tp̂x0 =
x0+t−1∏
j=x0

pj (84)

Be tkpx(λ) the objective function to calibrate defined in (60), with λ the
parameters’ vector of the model to be calibrated. λ are estimated using
Least Squares, the easiest way to procede, minimizing the errors between the
survival probabilities predicted by the stochastic models and the observed
one.

OLS = min
λ

n∑
k=0

(kpx(λ)−k p̂x)2 (85)

It must be solved a non linear system with the generalised Newton-Raphson
method in R, but the output is sensitive to the starting values needed, for the
optimal choice are randomly generated different starting points (see Zeddouk
[35]). Using the data and the method described above, with starting point
µx(0) = −ln(p50), are estimated the parameters of the three models for the
three different cohorts of individuals:

Non-mean-reverting model

1900 1915 1955
µ50(0) 0.007064898 0.005454851 0.002398374
error 0.005914428 0.003332871 0.062757120
α 0.075985339 0.0770249700 0.074757481
σ 0.000000126 0.000000132 0.000000217

Table 3: Estimated parameters for the survival process in the non-mean-
reverting process

The values are consistent for this model. The α parameter has a declining
tendency. The σ values are quite little, leading to the evidence that the
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volatility in mortality is considerably smaller than in finance. It must be
observed that residuals are much more significant for the generation of 1955.
These results are in the following charts, where is clear that the fit is quite
good for the 1900 and 1915 cohorts, while is not accetable for the 1955
generation.
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Figure 17: Survival functions, 1900,1915,1955 generation for non-mean-
reverting model
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Vasicek

1900 1915 1955
µ50(0) 0.007064898 0.005454851 0.002398374
error 0.335919797 0.343592874 0.362467920
α 0.023562120 0.019998012 0.011913990
γ 0.002235632 0.001876597 0.000873345
σ 0.000027929 0.000010321 0.000334569

Table 4: Estimated parameters for the survival process in the Vasicek model

In this case the residuals are huge for all the cohorts of individuals. The
fixed target γ highly decreases through the generations as expected. As can
be seen also in this model the σ paremeter is very low. The fitting of the
Vasicek model is not adequate, confirming the Luciano and Vigna’s result:
non-mean-reverting model are better than mean-reverting-model to project
the mortality. As previous, the charts:
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Figure 18: Survival functions, 1900,1915,1955 generation for Vasicek model
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Hull and White

1900 1915 1955
µ50(0) 0.007064898 0.005454851 0.002398374
error 0.000020023 0.000053323 0.0009247920
α 0.634769826 0.610482593 0.2021555423
κ 0.004484584 0.003330091 0.0004848446
β 0.083061184 0.082626391 0.0983905356
σ 0.015988143 0.000244231 0.0068082860

Table 5: Estimated parameters for the survival process in the Hull and White
model

The residuals are very small in this model for all the cohorts of individuals.
The parameter α is more significant in the older generations, because the
target is lowering, that is the same reason that leads the huge decrease for
the cohort of 1955 (10−1) of the κ, and less intuitively is the same for the β
parameter that increases in the younger generation. The σ parameter is very
low for all the generations as the others models. The fitting is almost perfect,
confirming the Zeddouk’s result for the Belgians’cohorts: mean-reverting-
moving target models are the best way to project the mortality. As previous,
the charts:

58



Figure 19: Survival functions, 1900,1915,1955 generation for Hull and White
model

Finally, a comparison betwenn the calibration errors, the discrepancies
between observed and theoretical survival probability for all generations. In
the table below are depicted the errors for each model and cohort:
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1900 1915 1955
Non-mean-reverting 0.005914428 0.003332871 0.062757120

Vasicek 0.335919797 0.343592874 0.362467920
Hull and White 0.000090023 0.000053323 0.008357920

Table 6: Calibration errors

The significant error of the Vasicek model confirms the Luciano and
Vigna’s result in comparing non-mean-reverting and mean-reverting processes;
the Vasicek is not adequate to depict µx(). The non-mean-reverting errors
are satisfyng, but not as good as the implementation of the Hull and White
model whit his proprierties, confirming the Zeddouk’s result. It can be usefull
also to calcute the BIC, a seltection method that implies a good fit, without
overfitting problems. In the following table the BIC results for the models:

1900 1915 1955
Non-mean-reverting -446.5632 -453.2042 -289.8423

Vasicek -213.9432 -233.4323 -198.0392
Hull and White -690.2341 -499.3241 -399.321

Table 7: BIC for all cohorts

The more the value of the BIC is low the more the model is appropriate,
remembering the definition

BIC = nln( ε
n

) + pln(n) (86)

with n the number of observations, p the number of parameters and ε the
residuals of the Least Squares. Is again clear that the result of the Hull and
White model is the best. Based on this evidence we keep the Hull and White
model for the projection of the future mortality and for the pricing of the
longevity-linked securities
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2.3 Mortality Projection
Are compared now the mean of the force of mortality, from µx(50) to µx(95),
plotting the force of mortality for 45 years, to study the path of the logevity
through different cohorts, using the non-mean-reverting model and the HW
model. Are used the parameter stimated in the previous subsection and a
number of 100.000 simulations.

Figure 20: Mean of µx for the three cohorts in Non-mean-reverting model
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Figure 21: Mean of µx for the three cohorts in Hull and White model

For both models, older is the generation, higher is the mean of µx(t). Is
possible to observe that for the mean reverting model, the mean of µx(t)
seems increasing more rapidly with age.

Have been used three continuous-time processes to represent the trend of
mortality, a way of operating very much in line with the Solvency II directive.
These three different types of stochastic processes differed in their drift and
diffusion parts, and their survival probabilities were given in closed form
and examined analytically thanks to their affines properties. The intensity
process has been calibrated with the Italian population using historical data
for previous generations (from HMD) and a projected mortality table for the
1955 cohort. For each model has been provided the S50(t) function for 45 years
in the three cohort analyzed and have been studied the residuals between
observed series and simulated series. As a consequence, has been showed that
adding a time-dependent long-term mean to the processes analyzed appears to
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be more suited for describing individual death intensity, fulfilling the majority
of the requirements for a mortality model. Lastly for the non-mean reverting
process and for the Hull and White has been projected the best estimate of
the future mortality. Has been found that, while the mean reversion feature
is unsuitable for mortality when using a constant target(Vasicek), it is ideal
when using a variable target connected to the increase in mortality with age.
An intriguing topic for future research would be to examine a mean reverting
moving target process with a jump component that could follow a compound
poisson process , with a given intensity λ related to the historical evidences of
improved mortality (scientific and medical discoveries) and worsering trends
(pandemics)
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3 Pricing of longevity derivatives

As life expectancy increases, annuity providers are increasingly facing longevity
risks. In order to hedge this risk, new longevity derivatives have been proposed.
Even if policy makers and academic researchers have been talking about it
for many years, securities related to longevity are not largerly traded in
markets, especially due to pricing difficulties. In this section, are compared
different existing pricing methods. Longevity risk pricing is determined for
Survival-forward, but can be used to price other longevity-related instruments.
The Hull and White model built in section 2 is used to express the evolution
of mortality over time. Are used Italian data to compute the price of the
S-forwards according to different three different pricing approaches. Some
writers introduced a new method inspired by Solvency II: the use of the cost
of capital method to set the price of longevity derivatives. Levantesi and
Menzietti [6] proposed a version of this method in a discrete time model.
In this section, is described this method, using continuous-time processes
to model longevity risks because they provide analytical ease of processing
and are generally used in financial instrument pricing. Finally is studied the
consistency between the cost of capital method and the three other classical
pricing methods often applied in finance,(see 1.4.4): the Wang transform, the
Sharpe ratio and the risk-neutral pricing.

3.1 S-forwards

As has been mentionened in the subsection 1.4.4, survival swaps are the most
interesting derivative that can be built, because of their low cost of transiction
and because they could be customized for the generic buyer, they also may be
considered as a collection of simpler derivative: S-forwards. As a results, this
section is dedicated on the structure and on the pricing of these derivatives.

3.1.1 Structure

Similar to a classic forward contract, S-forward’s two counterparties agree to
exchange two payments on a predetermined future date T (maturity date).
The cash flow is linked to survival rate index. The buyer of the S-forward
pays the seller a fixed rate (the survival rate agreed at the inception of the
contract), and gets a variable amount proportional to the realized survival
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rate in return. Therefore, one counterparty must pay the amount related
to the difference between the forward rate and the realized rate at maturity.
The forward rate is specified at the beginning of the contract and reflects the
expected level of life in the future. If the difference in T between realized
survivor and expected survivor is positive, then the insurer suffers a loss in
its portfolio. At the beginning of contract , the S-forward value Sf , is zero,
with:

Sf(T ) = [N(Tpx −T p̂x)] (87)
with N the Notional, Tpx the floating term, (the realized survival rate in T),
and T p̂x the fixed survival rate. i.e.

V(0, Sf(T )) = 0 (88)

With V(0, x) the value’s function at time 0. For a easier progress is considered
N = 1, and the payoff Sf in T is given by:

Sf(T ) =T px −T p̂x (89)

The realized survival rate is adapted to the filtration FT (is FT measurable),
the fixed one is F0 measurable, since is the probability computed at the
beginning of the conctract that an individual aged x in 0 survives T years.

3.1.2 Premise

A S-forward has to be priced. Are needed some hypothesis:

• for the modelling is implemented the Hull and White process (75),
choice based on the results in section 2.

• the interest rate term structure implemented is the EIOPA’s, based on
the Smith and Wilson model with an ultimate forward rate =3.6% 4

• is indicated with V(t, Sf(T )) the price in t, ∀ t in (0,T) of a Survival
forward with maturity T.

• named S(x+ t, T − t) the survival index in t of an individual aged x,
surviving T-t years more: (see Zeddouk and Devolder [43])

S(x+ t, T − t) = e−
∫ T
t
µx(u)du (90)

4see Appendix C

65



so that under the real world measure P:

EPt [S(x+ t, T − t)] = eA(t,T )−B(t,T )µx(t) (91)

where A(t,T) and B(t,T) solutions of the Riccati equation solved for
the Hull and White model in (83)

• are not considered counterparty risk and the basis risk (i.e. the risk
related to the fact that the insurer’s population differs from the one of
the entire population used for the construction of the security).

As noted in the introduction of this section, the price of longevity-linked
securities is far from being solved. The literature present on this subject is
wide and there is a debate about the quality of the different pricing methods.
In fact, there are at least four pricing methods for longevity-linked securities:
the Wang transform, the Sharpe ratio approach, the risk-neutral’s and the new
Cost of Capital method. The first is based on risk-adjusted probablities given
by a distortion operator, there are anyway complications in the estimation of
the parameter, linked to the lack of an annuity market (see 1.4.4). The second
utilizes Sharpe ratio rule, which asserts that the risk premium necessary for
investors to tolerate longevity risks equals Sharpe ratio of other undiversifiable
financial products (see Milevsky et al. (2005) [44]). This process involves
converting the probability measure from a real-world measure to a risk-
adjusted one produced by the constant market price of risk (Bauer et al.
2010 [4]). Milevsky (et al. (2006) [45]) recommends a Sharpe ratio of 0.25
for the longevity market based on stock market statistics. However, he
stated that "empirical evidence reveals that the risk premium of equities is
significantly larger than that of other securities." The Sharpe ratio could also
be adjusted with an appropriate annuity quotation, however the difficulty is
that the annuity market prices of longevity-related assets are insufficient. In
this sense, it should be noted that, in addition to longevity risks, insurance
companies are affected by other types of uncertainty, and the resultant risk
premium should be larger than the risk premium of the securities linked
to the longevity. The third technique is adapting the risk-neutral pricing
methodology created for interest rate derivatives to longevity-related variables
(see Dahl (2004) [30] ; Cairns et al. (2006) [46], [47]; Biffis et al. (2010)
[48]). As Barrieu et al. wrote (Barrieu and Loubergé (2013) [49]) “the main
underlying assumption of this approach is that it is possible to replicate cash
flows of a given transaction dynamically using basic traded securities in a

66



highly liquid market”. As a result, using a risk-neutral method necessitates
a highly liquid underlying market, which is required to build a replication
strategy. However, present liquidity in the longevity market is extremely low.
It is challenging to standardize risk-neutral indicators due to the scarcity of
market pricing data for longevity risks. The CoC approach (see Levantesi and
Menzietti, [6]) is based on the information included in the RM computed using
the conventional Solvency II calculation, can predict the maximum market
price of longevity risk. As a result, it enables the adoption of a risk-neutral
technique, which is often regarded as the most acceptable way since it is
adaptable to many cohorts and ages.

3.1.3 Pricing by Cost of Capital

The Cost of Capital approach concept is based on tying the price of the
longevity-linked securities to the capital the insurer must retain to cover
unexpected loss according to Solvency II Directive, where is stated that
liabilities that cannot be hedged shall be equal to the sum of a best estimate
and a risk margin. The best estimate shall correspond to the probability-
weighted average of future cash-flows, taking account of the time value of
money (expected present value of future cash-flows), using the relevant risk-
free interest rate term structure. The risk margin shall be such as to ensure
that the value of the technical provisions is equivalent to the amount that
insurance and reinsurance undertakings would be expected to require in order
to take over and meet the insurance and reinsurance obligations (see 1.4.2).
The method followed by the regulator to calculate the RM is the cost of
capital of the basic own founds equal to the SCR, i.e. the capital required to
cover the unexpected loss on a one-year time horizon wit 99.5% probability.
The CoC rate is the average spread over the risk-free rate that the market
expects insurance companies to earn on their equity. The exact computation
of RM, required the determination of SCRt; compute ∀ future t the SCRt

would have been too complex for practical purposes, the EIOPA guidelines
listed some approximations. Is considered in this context the approximation
that assumes that the mortality evolves up to t like its best estimate; so that
RMt is defined as:

RMt = 6%
T−1∑
i=t

SCRiv(t, i+ 1) (92)
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The CoC rate is 6% as now is fixed for the SII standard formula, the discount
factor is the risk-free. In this context entering a Survival-forward means
that the insurer can lower his own exposition (if the cover of the longevity
risk is total its SCR is nill and so does the RM from (92)). Thus is evident
that at most the price of Sf(t, T ) is equal to the cost of retain the SCR,
otherwise nobody will be interesed in its buying. So this method leads to the
maximum price the insurer is ready to pay for transfer longevity. Based on
the considerations above the price corresponds to:

SfCoC(t, T ) = BEPt +RMt (93)

with
BEPt = EPt [Sf(T, T )]v(t, T ) (94)

In analogy, at 0:
SfCoC(0, T ) = BEP0 +RM0 (95)

with
BEP0 = EP0 [S(x, T )−T p̂x]v(0, T ) (96)

Instead for the calculation of the RM is used (92) with the same approximation
used by Levantesi and Menzietti for determine the succesive ˆSCRi = SCRi|0:

SCRi = V aR99.5%[v(i, T )(Sf(T, T )99.5% −BEPi )]
= v(i, T )V aR99.5%[S(x, T )−T p̂x]− v(i, T )(EP[S(x, T )−T p̂x])
= V aR99.5%[v(i, T )(S(x, T )−T p̂x)]− v(i, T )(EP[S(x, T )−T p̂x])
= v(i, T )(S(x, i)(V aR99.5%[S(x+ i, T − i)]− EP[S(x, T )])

(97)

SCRi|0 = v(i, T )(EP[S(x, i)]V aR99.5%[S(x+ i, T − i)− EP[I(x, T )]) (98)

Then the price of the S-forward with the Levantesi and Menzietti specification
is equal to:

SfCoC(0, T ) = v(0, T )(EP[S(x, T )−T p̂x]

+ 6%
T−1∑
i=0

v(i, T )v(0, i+ 1)(EP[S(x, i)]V aR99.5%[S(x+ i, T − i)]− EP[S(x, T )])

(99)
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Applying the Hull and White model defined in premise, to obtain the specific
formulation of the price, we must calculate:
V aR99.5%[S(x+ i, T − i)]
As seen in section 2, under the measure P:

S(x+ t, T − t) = e−
∫ T
t
µx(s)ds = eY (t,T ) (100)

Is proved that:
Y (t, T ) ∼ N(ν(t, T ), η(t, T )2) (101)

As the survival index S is lognormal and the parameters ν(t, T ),η(t, T )2:ν(t, T ) = µx(t) e
−α(T−t)−1

α
− κeβt

β(α+β)(e
β(T−t) − 1)− κeβt

α(α+β)(e
−α(T−t) − 1)

η(t, T )2 = σ2

α2 (T − t− 1−e−α(T−t)

α
− (1−e−α(T−t))2

2α )
(102)

So the Value at Risk of the survival index on a confidence level % = 99.5% is:

V aR99.5%[S(x+ t, T − t)] = eν(t,T )+z%η(t,T ) (103)

with z% the quantile of level % of a standardized normal r.v., so z% = 2.58 (see
Solvency II standard formula). So if is required the price in 0 of the S-forward
with maturity T, evaluated with the CoC approach with the Levantesi and
Menzietti specification in a continuous-time setting, with the application of
the Hull and White model:

SfCoC(0, T ) = v(0, T )(eA(0,T )HW−B(0,T )HWµx(0) −T p̂x)

+ 6%
T−1∑
i=0

v(i, T )v(0, i+ 1)[eA(0,i)HW−B(0,i)HWµx(0)(eν(i,T )+z%η(i,T ))

− (eA(0,T )HW−B(0,T )HWµx(0))]
(104)

Is important to evaluate the SfCoC(0, T ) not just in 0, but ∀t in (0,T):

SfCoC(t, T ) = v(t, T )S(x, t)(EP[S(x+ t, T − t)]

+ 6%
T−1∑
i=t

v(i, T )v(i, i+ 1)(EP[S(x+ t, i− t)]V aR99.5%[S(x+ i, T − i)]− EP[S(x, T )])

(105)
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called tp
obs
x as the observed survival funciont Ft measurable equal to e−

∫ t
0 µx(s)ds

from (32), we have for the Hull and White application:

SfCoC(t, T ) = v(t, T )(tpobsx eA(t,T )HW−B(t,T )HWµx(t) −T p̂x)

+ 6%
T−1∑
i=0

v(i, T )v(0, i+ 1)[tpobsx eA(t,i)HW−B(t,i)HWµx(t)(eν(i,T )+z%η(i,T ))

− (eA(t,T )HW−B(t,T )HWµx(t))]
(106)

3.1.4 Pricing by Wang transform

The Wang transform technique is a distortion method based on a distortion
operator (1.4.4). In the context of insurance, this operator transforms the best
estimate of the survival index into its risk equivalent by applying a certain
risk premium. This approach is described as a pricing method utilized in the
pricing of numerous over-the-counter longevity swaps in practice (see Dowd
et al. [50]).
The distortion risk measure is:

Ψg(x) =
∫ ∞

0
g(F x(u))du (107)

x continuous (non-negative)random variable F x(u) is its decumulative function
and g is the distortion function seen in 1.4.4, given by:

g(u) = Φ[Φ−1(u) + π] (108)

Replacing (108) in (107):

Ψg(S(x+ t, T − t)) =
∫ ∞

0
Φ[Φ−1(F S(x+t,T−t)(u)) + π]du (109)

The price in t of a Survival-forward is then:

SfWang(t, T ) = v(t, T )(tpobsx Ψg(S(x+ t, T − t))−T p̂x|Ft) (110)

To derive an explicit formulation of the S-forward price using the HW model,
we must first calculate the Ψg(S(x+ t, T − t)) formula. With a corrected drift
value, the Wang distortion of a log-normal distribution remains log-normal:

70



eN(ν(t,T ),η2(t,T )) 7−→ eN(ν(t,T )+πη(t,T ),η2(t,T ))

Thus:
Ψg(S(x+ t, T − t)) = eν(t,T )+πη(t,T )+ η2(t,T )

2 (111)
Then the price of the derivative with Wang under Hull and White is computer
as:

SfWang(t, T ) = v(t, T )(tpobsx eν(t,T )+πη(t,T )+ η2(t,T )
2 −T p̂x) (112)

3.1.5 Pricing by Sharpe Ratio

The first to apply this pricing approach in this context were Milevsky et
al.[44], followed by Loeys et al. [51] for the q-forwards pricing. The Sharpe
ratio method is a standard deviation principle that does not employ a change
of survival probability. In dynamic financial markets, the Sharpe ratio serves
as a baseline for determining risk premium. The Sharpe ratio is provided by:

πSharpe = E[Rp −Rf ]
σp

(113)

E[Rp − Rf ] is the expected spread between the portfolio return and the
risk-free rate. σp is the standard deviation of the portfolio return. In the
insurance environment (see Barrieu et al., 2014 [52]) (113) can be expressed
as:

πSharpe = V(T, Y )− E[Y ]
σ(Y ) (114)

Where V(T, Y ) is the value in T of the longevity-linked Y (its payoff), E[Y ]
its Best Estimate, and σ(Y ) its standard deviation. Under this specification,
the price of Sf(t, T ) is:

SfSharpe(t, T ) = v(t, T )(tpobsx EP[S(x+ t, T − t)]−T p̂x
+ πtp

obs
x

√
VarP[S(x+ t, T − t)])

(115)

with VarP[S(x+ t, T − t)] the variance of the survival index, π the supposed
sharp ratio. Considering the Hull and White model, the variance of the
survival function could be written as:

VarP[S(x+ t, T − t)] = VarP(eY (t,T )) = VarP(eN(ν(t,T ),η(t,T )2))
= (eη(t,T )2 − 1)e2ν(t,T )+η(t,T )2 (116)
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SfSharpe(t, T ) = v(t, T )(tpobsx EP[S(x+ t, T − t)]−T p̂x
+ πtp

obs
x

√
(eη(t,T )2 − 1)e2ν(t,T )+η(t,T )2)

(117)

3.1.6 Pricing by Risk Neutral

Risk-Neutral pricing is a method extensively used in quantitative finance to
generate derivative prices, it may be applied to compute the price of longevity-
linked securities. As widely noted in several studies this methodology is not
appropriate for pricing longevity derivatives since the longevity market is still
in its infancy, and this method necessitates the availability of a significant
amount of data.

Risk Neutral measure - Girsanov Theorem
Given the probability space (Ω,F ,P) and a non negative r.v. Z � E[Z]=1 .
Be defined a new probability measure Q where:

Q(A) =
∫
A
Z(ω)dP (ω) (118)

∀A ∈ F . Any r.v. X has now two expectations, one under the original
measure P and one under Q. The relations between the two measures is given
by

EQ[X] = EP[XZ] (119)
If P(Z > 0) = 1 and so does under Q (119) could be written as:

EP[X] = EQ[X
Z

] (120)

Z is the Radon-Nikodym derivative of Q respect to P, and:

Z = dQ
dP

(121)

Lemma. Be t in [0,T] and let Y be a Ft −measurable r.v.. Then

EQ[Y ] = EP[Y Z(t)] (122)

Lemma. Be t and s in 0 6 s 6 t 6 T and let Y be a Ft −measurable r.v..
Then

EQ[Y |Fs] = 1
Z(s)E

P[Y Z(t)|Fs] (123)
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Girsanov Theorem - one dimension. Be Zt, for 0 6 t 6 T a Brownian
motion on (Ω,F ,P) and Ft a filtration for the brownian. Let Bt for 0 6 t 6 T
an adapted process. Define:

ρt = exp(−
∫ t

0
BudZu −

1
2

∫ t

0
B2
udu) (124)

Z̃t = Zt +
∫ t

0
Budu (125)

Is also assumed that
E[

∫ T

0
B2
uρ

2
udu] <∞ (126)

Set ρ = ρ(T ). Then E[ρ]=1 and under the probability measure P̃ = Q given
by (118), Z̃t is a Brownian motion.
Is setted up an asset price model in which P is the actual probability measure
and Q is the risk-neutral measure. Considering a payoff YT not exposed to
interest rate risk. If the market is perfect complete and without arbitrages
(the Solvency II requirements), then the value in 0 of YT is:

V(0, YT ) = EQ0 [YT ]
[1 + i(0, T )]T (127)

The risk neutral expectation is the market equivalent, i.e. the RN probability
measure contains the risk premium and so is a risk-adjusted measure. Based
on what stated before in Girsanov theorem, Q is also known as equivalent
martingale measure, specified in corrispondence of a numerary N , that is the
unit of measurement of the measure, ∃ a one-to-one corrispondence between
the couple (Measure, Numerary), for the measure Q the numerary is the
money market account δ:

δT = e
∫ T

0 r(u)du (128)
r(u) spot rate. So the money market account is the payoff in T of an
investment in t=0 of a one unit of currency in a roll-over strategy in ZCB
with infinitesimal maturity. If the market is complete perfect and free from
arbitrages than (Q, δ)∃! . Because the longevity-linked securities market has
not these characteristic the risk neutral approach proves difficulties. Is useful
define a Qπ probability measure, where π s the market price of longevity risk.
Respect what stated the price in t of an S-forward under the risk-neutral
approach can be written as:

Sf(t, T )Qπ = v(t, T )(tpobsx EQπt [S(x+ t, T − t)]−T p̂x) (129)
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To reach the explicit formula of (129) using the Hull and White model for the
modelling of µx(t) in a continuous-time setting, is needed the introduction of
a function of time of the market prices, said π(t, µx(t)) , and let Z̃t defined
as (125) with the Bt function replace by π(t, µx(t)), following the Zeddouk’s
proceeding [43] is put π(t, µx(t)) = π a constant market price of risk. Under
the probability measure Qπ the Hull and White process manteins his affines
proprierties and can be written as:

dµQπx (t) = (ϑ− αµx(t) + σπ)dt+ σZ̃t (130)

Where as stated in the Girsanov Theorem Z̃t is a standard Brownian motion
under Qπ probability measure. From (130) a positive value of π increases the
intensity of mortality. Under risk neutral probability the survival probability
is given by:

EQπ [S(x+ t, T − t)] = eA
HW
Qπ (t,T )−BHWQπ (t,T )µx(t) (131)

whit AHWQπ (t, T ) and BHW
Qπ (t, T ) given by


AHWQπ (t, T ) = κ

α
[e−αT e(β+α)T−e(β+α)t

β+α − eβT−eβt
β

]− σ2

2α2 [ 1
α

(1− e−α(T−t))− T + t]
− σ2

4α3 (1− e−α(T−t))2 − σπ
α

(1− exp(−α(T − t))
BHW
Qπ (t, T ) = 1

α
(1− e−α(T−t))

(132)
So the price with explicit formulation of the Hull and White model:

Sf(t, T )Qπ = v(t, T )(tpobsx eA
HW
Qπ (t,T )−BHWQπ (t,T )µx(t) −T p̂x) (133)

3.1.7 Numerical Application

Are now priced S-forwards with the three differents approaches studied for
Italian population. Are stated the following hypotesis:

• Given the italian cohort of individuals born in 1955 that had 65 years
old in 2020

• N0=10 000 policyholders

• Payment of 1£ to each policyholder alive in T

• It is priced the S-forward issued in t = 2020 = 0 for T= 5,10,15
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• The fixed leg is based on IPS55 built by ANIA

• The risk free structure is given by EIOPA’s in 2020

The following table contains the fixed survival rates from IPS55,
µ65(0) = 0.008861649

T 5 10 15
T p̂65 0.9488647 0.8775302 0.774194

Table 8: Fixed survival rates T p̂x for T=5,10,15 for cohort of 1955 in 2020

µ65(0) α κ β σ
0.008861649 0.1721555423 0.001525582 0.10983905356 0.0018082860

Table 9: Optimal parameters for the survival process Hull and White model

Hull and White
N0 = 10000 x0 = 65 µ65(0) = 0.008861649

T Price BE % RM%

5 16.082326 83.68914% 16.31086%

10 29.77604 63.87287% 36.12713%

15 47.79294 59.30265% 40.69735%

Table 10: Prices of different S-forwards via CoC, maturity= 5,10,15, technical
rate=0
Number of individuals whose longevity to be hedged = N0 = 10000
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Figure 22: Prices S-forwards, T=1,...,15, 1955 cohort via Cost of Capital
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Comparison with other pricing methods
To test the consistency of the Levantesi and Menzietti method with the
classical pricing methods of (1.4.4), must be computed the parameters that
identify these methods in such a way that the Cost of Capital price equals the
price of the others techinques. If the parameter is stable then the methods
are consistent:

Wang Transform
From 3.1.4 (112), is computed the π of the Wang method that equals the
CoC prices for T=5,10,15:

T CoC Price π
5 16.082326 9.51%
10 29.77604 9.46%
15 47.79294 10.79%

Table 11: Wang’s parameters π that equals (112) and (106)

Sharpe ratio
As seen in 3.1.5 (117) the price of an S-forward in 0 with this method, applying
the Hull and White model of the section 2, can be computed as:

SfSharpe(0, T ) = v(0, T )(eA(0,T )HW−B(0,T )HWµx(0)−T p̂x+π
√

(eη(0,T )2 − 1)e2ν(0,T )+η(0,T )2)
(134)

Therefore, is possible to determine π for T=5,10,15:

T CoC Price π
5 16.082326 9.53%
10 29.77604 9.47%
15 47.79294 11.89%

Table 12: Sharpe’s parameters π that equals (117) and (106)

Risk Neutral
For this application is needed the market price of longevity risk, it has been
cmputed as the market price that equals (106). As seen in 3.1.6 (133) the
price of an S-forward in 0 with this method, applying the Hull and White
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model of the section 2, can be computed as:

Sf(0, T )Qπ = v(0, T )(eAHWQπ (0,T )−BHWQπ (0,T )µx(0) −T p̂x) (135)

T CoC Price π
5 16.082326 -14.54%
10 29.77604 -21.47%
20 47.79294 -29.89%

Table 13: Equivalent market price π that equals (133) and (106)

3.2 Conclusion
In this article, a new technique to price longevity linked securities based on
the Cost of Capital approach has been proposed in a continuous-time setting,
in accordance with the Solvency II requirement. Has been cited as an example
of a stochastic time-continuous process for lifespan the Hull and White model.
The Cost of Capital method is defined by a single variable: the Cost of Capital
rate, which is imposed by EIOPA (6 percent in Solvency II now), therefore
is not needed its estimation. This single parameter value may be used as a
benchmark, allowing us to identify similar parameter values in the three other
techniques. The Levantesi and Menzietti method estimates the "maximum
price" that the fixed payer is willing to pay for hedging longevity risk. The
annuity provider would have the convenience of retaining longevity risk if
the necessary S-forward price were greater. The simulations presented above
show that the Wang and the Sharpe ratio approaches are more consistent
than the Risk Neutral with the CoC (see the following Figure 19).
It can be noted that the Cost of Capital is one way to calculate the Risk
Margin, but this entity could be measured in other ways (e.g. with a percentile
method at 75% of the BE), indeed when in 1.4.2 are listed the Solvency II
articles, is the regulator that suggest the CoC apprach to determine the RM,
but being a prudential amount over the BE, it could have been determined in
different ways. In addition it has been assumed that all insurance firms accept
the same market price for longevity risk, which is included in the Solvency
II RM calculation. However, diversification effects, strategic considerations,
and risk attitude may drive the insurer to accept a different market price
for longevity risk. Furthermore, the counterparty default risk has not been
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included, which would raise the price of longevity-linked instruments and need
a separate capital charge for the insurer. Further study should be conducted
to determine the impact of this risk on the risk margin and the maximum price
of longevity risk. Even though this technique has certain drawbacks, it has
the benefit of operating inside the well-known and potentially standardized
framework of Solvency II, and the RM can be regarded a potential instrument
for estimating a maximum value for the market price of longevity risk.
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A Brownian Motion and Stochastic Calculus
Given (Ω,F ,P) and a filtration Ft on it, is called standard Brownian Motion
Z = (Zt, t > 0) or Z(t) the stochastic process that has the following properties:

• P (Z0 = 0) = 1

• Zt − Zs is indipendent from Fs:
for tk in 0 = t0 < t1 < ... < tk < ... < tn = t −→ Z(tk)− Z(tk−1) indip.
rv. The process has indipendent increments

• The r.v. Zt − Zs has normal distribution with mean 0 and variance
|t− s|, i.e.
Zt − Zs ∼ N(0, |t− s|).

A process with indipendent increments is always Markovian:
t > s; P (Zt ∈ A|Fs)=P (Zt ∈ A|Zs) ⇔ the process depends only on the
position in s. If Zs in known, Zz and Zt with z < s < t are conditionally
indipendent.

The Brownian motion is a Martingale:

E[Zt|Fs] = E[Zt − Zs + Zs|Fs] = E[Zt − Zs] + Zs = Zs (136)

The Markovian and the Martingale properties comes from the indipendent
increases’property

Tansitional law:

P (Zt ∈ dy|Zs = x) = e
−(y−x)2

2(t−s)√
2π(t− s)

dy (137)

The trajectories of the Brownian motion are characterized:

• continuous

• not differentiable

• quadratic deviation of the order of a time
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The first item could be proof from a Kolmogorov theorem:
Kolmogorov Theorem Given the process X(t), t > 0 and be given g = g(h)
and q = q(h) two non-decreasing monotone even functions for h > 0, and∑∞
n=1 g(2−n) <∞ , ∑∞

n=1 2nq(2−n) <∞;
if ∀t, t+ h ∈ (a, b), P (|X(t+ h)−X(t)| > g(h)) < q(h),
then X(t) ha continuous trajectories.

Continuous and non-differentiable curves were articulated by mathemati-
cians already in the last century (e.g. the Von Knocke curve) and were
presented as pathological phenomena. Brownian motion has trajectories that
are all (with the exception of a set of zero probabilities) similar to those by
Von Knocke. A continuous undifferentiable trajectory is a fractal (non-integer
dimension).
A famous result due to Lévy shows that the quadratic variation of the Brown-
ian motion in the time interval [0, t] is equal to t. This result is related to the
fact that the variation before motion Brownian in [0, t] is infinite. Obviously
this latter property derives from the non-differentiability of its trajectories:
Theorem For the Brownian Zt:

lim
n→∞

2n∑
k=1

[Z(kt2−n)− Z((k − 1)t2−n)]2 = t (138)

Stochastic integration and Itô’s formula

The integration of stochastic processes respect to Brownian motion was
introduced by several authors in a completely independent way. The credit is
attributed to Kiyosi Itô, but it seems that before him the idea had also come
to Wolfgang Doeblin and Iosif Gikhman. The study of stochastic differential
equations was born already in 1940s and had a major impact on theory and
applications both to physical sciences and to finance and economics.

Given (Ω,F ,P), a filtration Ft on it and a standard Brownian Motion
Z = (Zt, t > 0) on the filtration. Given X such that:

X : ([0, T ]× Ω,B[0, T ]×F∞) −→ (R,B) (139)

This means that ∀(t, ω) ∈ [0, T ] is defined the application (t, ω) −→ X(t, ω).
As t ∈ [0, T ] varies, it is described the trajectory ω while, for fixed t, X(t, ω)
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represents the set of values (or positions) of process X at time t. The class
of processes for which we define the stochastic integral respect to Z in the
interval [0, T] is indicated with the symbol H2[0, T ] and has the following
properties:
(i) for every t ∈ [0, T ], X(t, ω) is Ft-measurable, that is, for every Borel’s set
A ∈ B[0, T ], we have that (ω : X(t, ω) ∈ A) ∈ Ft;
(ii) ∫ T

0
E[X2](t)dt =

∫ T

0
dt

∫
Ω
X2(t, ω)dP (ω) <∞ (140)

Property (i) indicates that processes X must be non-anticipating, that is,
their values must depend only on the events that have occurred until instant
t. Property (ii) concerns the finiteness of the second moment of the process
X referred to by the notation H2[0, T ]. The construction of the stochastic
integral follows the path of constructionclassical of the Lebesgue-Stieltjies
integral. The first step is in constructing the stochastic integral for simple
processes, that is processes having the following form:

X(t, ω) =
n−1∑
i=0

X(ti, ω)1(ti,ti+1](ω)

=
n−1∑
i=0

ai1Ii(ω)
(141)

where 1A is the indicator function of the set A and Ii = (ti, ti+1],
⋃n−1
i=0 Ii =

(0, T ] and Ii ∩ Ij = ∅ for i 6= j and ai : Ω −→ R are Ft-measurable r.v. with
Ea2

i <∞.

The simple stochastic integral of X respect to Brownian motion is:
∫ T

0
X(t, ω)dZ(t, ω) =

n−1∑
i=0

ai[Z(ti+1, ω)− Z(ti, ω)] =
n−1∑
i=0

ai∆Zi (142)

where 0 = t0 < t1 < ... < tn = T The next step in the integral construction
is the approximation ∀X ∈ H2[0, T ], with simple processes Xn such that
Xn −→ X in H2 : ∫ T

0
XdZ = lim

n→∞
q.m.

∫ T

0
XndZ (143)
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where limn→∞ q.m. is the limit in quadratic mean of Xn.

The propierties of the stochastic integral of a simple precess X:
Theorem
(i) for the process of (142) we have E[

∫ T
0 XdZ] = 0

(ii) the process
∫ T

0 XdZ, T>0 is a martingale adapted to the filtration FT ,
T>0
(iii) E[

∫ T
0 XdZ]2 =

∫ T
0 E[X2]dt

(iv) E[sup06t6T (
∫ t
0 XdZ)2] = 4

∫ T
0 E[X2]dt

Itô’s Formula
A fondamental result of the stochastic calculus is the Itô’s formula. Consid-
ering a function y = f(x, t) with x ∈ R and t ∈ R+, with partial derivatives
continuous and limitates. Then for a process Y (t) = f(Z(t), t) the Itô’s
formula gives a rapresentation of dY as follows:

dY = ∂f

∂x
(Z(t), t)dZ + 1

2
∂2f

∂x2 (Z(t), t)dt+ ∂f

∂t
(Z(t), t)dt (144)

(144) differs to normal calculus for the term with the second order derivative.
The associate dt term discends from the fact that ∆2Z ' ∆t.

Supposed that ∂f
∂x

(Z(s), s) ∈ H2[0, t] for s in (0,t). Thus:

f(Z(t), t)− f(Z(0), 0)
= Y (t)− Y (0)

=
∫ t

0

∂f

∂x
(Z(s), s)dZ(s) + 1

2

∫ t

0

∂2f

∂x2 (Z(s), s)ds+
∫ t

0

∂f

∂t
(Z(s), s)ds

(145)
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B Affine Processes
For the modellig of the intensity of mortality µ() has been used in this work
affine models:

dµ(t) =f(t, µ(t))dt+ g(t, µ(t))dZtP
dµ(t) =f̂(t, µ(t))dt+ g(t, µ(t))dZtQ

(146)

respectively the dynamics of µ(t) under the real world probability and the
risk adjusted. Has been chosen the affine’s class model (i.e. f and g2 are
affine in µ) because in this way is possible to solve analytically the stochastic
differential equation (under real world and under RN) with the particularly
boundary constraint on S(µ(t), t):f(t, µ(t)) = f0 + f1µ(t)

g2(t, µ(t)) = g0 + g1µ(t)
(147)

The distribution probability of µ(t) turns stationary with the appropriate
choice of the sign of f0 and f1. If one reasonably chooses positive f0 and
negative f1, a mean reverting process is created which opposes the Brownian
gdZ which tends to distort the distribution. The two conflicting hypotheses
make the process stationary.
For the choice of g2(t, µ(t)) there are three hypotesis that corresponds to the
three classical financial models studied:

g2(t, µ(t)) =



g1 = 0 ⇒ g2(t, µ(t)) = g0

g1 > 0, g0 = 0 ⇒ g2(t, µ(t)) = g1µ(t)

g1 > 0, g0 6= 0 ⇒ g2(t, µ(t)) = g0 + g1µ(t)
(148)

Respectively Vasicek, CIR (Cox Ingersoll Ross) and traslated CIR.

Solving the SDE with boundary condition T−Tpx = 1, and with f̂(t, µ(t)) =
α(γ − µ(t)) and g2(t, µ(t)) = g0 + g1µ(t), we obtain:

p(t, T ) = e−A(τ)−B(τ)µ(t) (149)
with p(t, T ) =T px+t.
This solution is the same for all the affines models, and is proved by substi-
tuting it in the SDE:
∂p(t, T )
∂t

+ [α(γ − µ(t))]∂p(t, T )
∂µ(t) + 1

2g
2(t, µ(t))∂

2p(t, T )
∂µ(t)2 = p(t, T )µ(t) (150)
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Substituing (149) in (150) are computed the derivatives:

∂p(t, T )
∂t

=e−A(τ)−B(τ)µ(t) ∂

∂t
[−A(τ)−B(τ)µ(t)] =

=p(t, T )[ ∂
∂τ
A(τ) + ∂

∂τ
B(τ)µ(t)]

(151)

∂p(t, T )
∂µ(t) = p(t, T )[−B(τ)] (152)

∂2p(t, T )
∂µ(t)2 = p(t, T )B2(τ) (153)

i.e.

p(t, T )[ ∂
∂τ
A(τ) + ∂

∂τ
B(τ)µ(t)] + α̂(γ̂ − µ(t))p(t, T )[−B(τ)] + 1

2(g0 + g1µ(t))p(t, T )B2(τ)

= p(t, T )µ(t)
(154)

thus

[∂B(τ)
∂τ

+ α̂B(τ) + 1
2g1B

2(τ)− 1]µ(t) + [∂A(τ)
∂τ

− α̂γ̂B(τ) + 1
2g0B

2(τ)] = 0
(155)

Both terms in [.] must be 0 so that p(t, T ) is solution of the SDE ∀µ(t):
The first is a differential equation in B(τ):

∂B(τ)
∂τ

= −1
2g1B

2(τ)− α̂B(τ) + 1 (156)

To be solved is needed a boundary condition for B, from (149) and p(T,T)=1
∀µ then: A(0) = 0

B(0) = 0
(157)

thus are obtained the known Riccati equations:
∂B(τ)
∂τ

= −1
2g1B

2(τ)− α̂B(τ) + 1
B(0) = 0

(158)
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In Vasicek is elementary as g1 = 0
∂A(τ)
∂τ

= α̂γ̂B(τ)− 1
2g0B

2(τ)
A(0) = 0

(159)

Once solved (158), (159) is easy solved by integration:∫ τ

0
A(u)du = α̂γ̂

∫ τ

0
B(u)du− 1

2g0

∫ τ

0
B2(u)du (160)

All these integrals are solvable in closed form, thus A(τ) and B(τ) are explicitly
solvable

87



C EIOPA’s structure
EIOPA’s term structure is not constructed starting from the resolution of
an optimal problem between the model and the market, but is based on an
interpolation method, setting a limit value (3.6%) to infinity exogenously.
EIOPA works directly on discount factors v(t, t+ τ) and looks for a function
that passes through all points.

Interpolation
We are looking for a function that passes through n points:

• n = 2 −→ passes a straight line (n-1 order polynomial: y = ax+ b)

• n = 2 −→ passes a parabola (n-1 order polynomial: y = ax2 + bx+ c)

• if n is "big" are used Lagrange polynomial:
if x = xk, f(xk) = 1, if x = xi with i 6= k f(xi) = 0, e.g.:
for n=2:

L1(x) = x− x2

x1 − x2
7−→


if x = x1 : L1(x1) = 1

if x = x2 : L1(x2) = 0

or

L2(x) = x− x1

x2 − x1
7−→


if x = x1 : L2(x1) = 0

if x = x2 : L2(x2) = 1

(161)

The line that passes through two points is
f(x) = y1L1(x) + y2L2(x)

for n=3:
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L1(x) = x− x2

x1 − x2

x− x3

x1 − x3
7−→



if x = x1 : L1(x1) = 1

if x = x2 : L1(x2) = 0

if x = x3 : L1(x3) = 0

or

L2(x) = x− x1

x2 − x1

x− x3

x2 − x3
7−→



if x = x1 : L2(x1) = 0

if x = x2 : L2(x2) = 1

if x = x3 : L2(x3) = 0

or

L3(x) =...

(162)

The parabola that passes through three points is
f(x) = y1L1(x) + y2L2(x) + y3L3(x)

Generally f(x) = ∑n
i=0 yiLn,i(x)

Alternatively, one can interpolate piecewise, minimizing the problems
related to the representation of the polynomial which could tend to os-
cillate a lot. The trade-off is in the choice of a third degree polynomial.
With the cubic spline, is needed a point of continuity between the
sections. So if one has n+1 point ⇒ n intervals.
In the i-interval one has fi(x) = aix

3 + bix
2 + cix+ di.

So 4 parameters for n uknowns (n intervals) ⇒ 4n uknows, to which
correspond n + 1 conditions, the passage through the n + 1 points
minus the two extremes that have no contacts= n+1-2= n− 1, to which
are added 3 (n-1) conditions given by the continuity of the functions,
continuity of the first derivative and continuity of the second derivative.

3(n− 1) +n+ 1 = 4n− 2 conditions, so are needed two more conditions:
f”(x0) = f”(xn) .
The one described is the Natural Cubic Spline. The spline used by
EIOPA is the Tension Spline, where there is an exogenous parameter,
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are intermediate splines between linears and cubics. The tension splines
are characterized by an exogenous parameter, a tension parameter such
that if it tends to 0, obtaining the cubic spline, if it tends to infinity,
the linear spline is obtained.
EIOPA’s Smith and Wilson model interpolate on v(t, t+ τ) and is given
by:

v(t, t+ τ) = e−h∞τ +
N∑
j=1

ξjW (τ, τj) (163)

for a given τj and s, the W (τ, τj) is such that:

W (τ, s) = e−h∞(τ+s)[αmin(τ, s)− e−αmax(τ,s)sinh(αmin(τ, s)] (164)

the parameters are −h∞, α exogenous, and ξi, τi given by the market
for i=1,...,N
h∞ is such that h∞ = limτ→∞ h

SW (t, t+ τ)
α is a free-parameter (semi-exogenous), adjusts how quickly the curve
reaches the asymptotic value as τ increases.
Given v(t, t+ τ)SW is possible to write h(t, t+ τ)SW = − 1

τ
lnv(t, t+ τ),

thus:
lim
τ→∞
−1
τ
lnv(t, t+ τ) = h∞ (165)

To explicitly choose α, it must be made such that
τ ∗/|h(t, t+ τ ∗)− h∞| < ε

EIOPA does not want the asymptote to be reached in a very high
number of years, therefore it imposes an α such that the structure
arrives at the asymptote in generally a τ ∗ = 60.
The other parameters are given from market by:


v(t, t+ τ1)
v(t, t+ τ2)

...
v(t, t+ τN)

 =


e−h∞τ1

e−h∞τ2

...
e−h∞τN

 +


W (τ1, τ1) + ...+W (τ1, τN)
W (τ2, τ1) + ...+W (τ2, τN)

...
W (τN , τ1) + ...+W (τN , τN)



ξ1
ξ2
...
ξN


(166)

or simply: [
v

]
=

[
η

]
+

[
W

] [
ξ

]
(167)

i.e:
~ξ = W−1(~v − ~η) (168)
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Observation: the sinh function
y(x) is the spline function on the whole intervale [x0, xN ], ∀ point, the
second order derivative has an important property: it can be written as
linear combination of the y′′(x) itselves in x0, x1, ..., i.e in (xi, xi+1):

y
′′(x) = xi+1 − x

xi+1 − xi
y
′′(xi) + x− xi

xi+1 − xi
y
′′(xi+1) (169)

∃ curves such that [y′′(x)− σ2y(x)]:

y
′′(x) = xi+1 − x

xi+1 − xi
[y′′(xi)−σ2y(xi)]+

x− xi
xi+1 − xi

[y′′(xi+1)−σ2y(xi+1)]
(170)

(170) is the tension spline and σ2 the tension parameter such that:
for σ2 = 0 ⇒ cubic spline (169)
for σ2 =∞ ⇒ linear spline
The solution of [y′′(x)− σ2y(x)] is the sinh.
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